TRANSPORTATION ANALYSISSIMULATION SYSTEM
(TRANSIMYS)

Version: TRANSIMS-LANL-1.0

VOLUME 3—FILES

28 May 1999

LA-UR 99-2579

COPYRIGHT, 1999, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA. THIS SOFTWARE WAS PRODUCED
UNDER A U.S. GOVERNMENT CONTRACT (W-7405-ENG-36) BY LOS ALAMOS NATIONAL LABORATORY,
WHICH IS OPERATED BY THE UNIVERSITY OF CALIFORNIA FOR THE U.S. DEPARTMENT OF ENERGY. THE U.S.
GOVERNMENT IS LICENSED TO USE, REPRODUCE, AND DISTRIBUTE THIS SOFTWARE. NEITHER THE
GOVERNMENT NOR THE UNIVERSITY MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY
LIABILITY OR RESPONSIBILITY FOR THE USE OF THIS SOFTWARE.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 2
LA-UR —99-2579

TRANSIMS

Version: TRANSIMS-LANL-1.0

VOLUME 3—FILES

28 May 1999

LA-UR 99-2579

The following persons contributed to this document:
C. L. Barrett*
R. J. Beckman*
K. P. Berkbigler*
K. R. Bisset*
B. W. Bush*
S. Eubank*
J. M. Hurford*
G. Konjevod*
D. A. Kubicek*
M. V. Marathe*
J. D. Morgeson*
M. Rickert*
P. R. Romero*
L. L. Smith*
M. P. Speckman**
P. L. Speckman**
P. E. Stretz*
G. L. Thayer*
M. D. Williams*

Los Alamos National Laboratory, Los Alamos, NM 87545
** National Institute of Statistical Sciences, Research Triangle Park, NC

TRANSIMS-LANL-1.0 — Files— May 1999

Page 3
LA-UR — 99-2579

Acknowledgments

This work was supported by the U. S. Department of Transportation (Assistant Secretary for
Transportation Policy, Federal Highway Administration, Federal Transit Administration), the U. S.

Environmental Protection Agency, and the U. S. Department of Energy as part of the Travel Moddl
Improvement Program.

Revisions:

10/1/99 — Updated Section 1 to include Optional tables for TRANSIM S components (Table 1).

TRANSIMS-LANL-1.0 — Files— May 1999 Page 4
LA-UR —99-2579

CONTENTS

1. INTRODUCTION .iittttttttttettteeteteeeeeseeseseseseeeseeeseseeeeeeeeeeeeeeseeeeseeeeereetereeeteeerrr 8
2. SYNTHETIC POPULATION ..ciiutttttiieeeeeessiittseeeeeeeeesssssssaseessesssssssssnseeesessessnsssssnneeaes 11
N R I PSPPSR 11
2.2 FILE FORMAT ..ttt ettt ettt ettt ettt ettt e e e sttt e e s s abee e e s s abe e e e eaabe e e e e aanbeeesaanbeeeeeannneeanann 11
2.3 INTERFACE FUNCTIONS.utttiiiiiieteaiiteee e atitea s e rbee e e s ettt e e s ssbe e e s saabeeeesaasbeeassanbeeeesanneeeasanns 13
2.4 DATA STRUCTURES.cetttiutttaeaautettaaatteeesaasteeasaaubeeeesasseeasaasbeeasaaabeeeesaasseeasaanseeeasansseeasanns 14
2.5 FILES oottt 15
2.6 CONFIGURATION KEYS. .. iuiitiiiiieiaeaietee e atttea e sttt e e s sseeee s smbeeassaabeeeesssbeeassanbeeeesannneeasanns 16
2.7 EXAMPLES .. .ottt ettt n e e 17
G T N o I AV o 1 =3RS 18
.1 TERMS ittt ettt a e e r e n e nanes 18
3.2 FILE FORMAT ..ttt ettt ettt ettt ettt ettt e e e sttt e e s e be e e e s s nbe e e e e abe e e e e aanbeeessnbeeeesannneeananns 18
3.3 INTERFACE FUNCTIONS.utttiiiiiieieeitieee e sttt ea e ettt e e s asee e e s snbe e e s saabee e e s esbeeessanseeeasannneeaeanns 20
3.4 DATA STRUCTURES.cetttiuttttaaautteaaaateeeasaasteeasaaabeeeesaasseeasaasbeeeeaaabeeeesaasseeasaanseeeasansseeasanns 22
1G0T o [PSPPSR 24
3.6 CONFIGURATION KEYS. .. iuiiiiiiiiieieeitttieeatitea e e rtee e e s sseeee s aambeeeesaabeeeesanseeassanbeeeasanneeasanns 25
3.7 EXAMPLES ...cei i itee ettt sttt n e 26
A, VEHICLE. ittt 27
N I 1 PSPPSRI 27
4.2 FILE FORMAT .ttt ettt ettt e e e sttt e e e ab e e e e e s abbe e e s abbe e e s enbeeeeeanbeeeesanneeeasann 27
4.3 INTERFACE FUNCTIONS ... ittt eitiete ettt ee ettt ee ettt e s st e e e s ssbe e e s ssbe e e s enbe e e e saaneeeesannneeananns 28
4.4 DATA STRUCTURES.tttitiutitaaaitettaaatrttasaauseeasaasseeesaaseeeaaaasseeasaasseeesaasbeeasaansseessaasseeasanns 29
A5 FILES coeiiiieieitiee ettt ettt aRe e e s et e aRr e s ne e nre e anneenneeena 30
4.6 EXAMPLESceiiiteieitetestee st e st e st e s et e s e e st e s e s e e e e n e e ne e e s r et e R r e e s ne e nre e nnreenneeeaa 30
D P AN 32
5.1 TERMS .. ittt ettt st e e nne e nnn e nanes 32
5.2 FILE FORMAT ..ttt ettt ettt ettt ettt e e sttt e e s e aae e e e s sabe e e e e abe e e e e aanbeeaeaanbeeeesanneeeanann 32
5.3 INTERFACE FUNCTIONS.ctttiiiiiieieeiteeee e ettt ea e sttt e e s aseeee s smbe e e s saabeeeessnbeeesaanbeeeesanneeeasanns 36
5.4 DATA STRUCTURES.cetttiutttaaatttetaaatteeasaasseeasaabeeeasaseeeasaasbeeasaabeeeasaasseeasaanseeessansseeasanns 36
5.5 UTILITY PROGRAMS ..ottt ittt ettt ettt ettt e e s asee e e s ssbe e e e saabee e e s ssbeeassanbeeeesanneeeasanns 37
LS T o [PP 40
5.7 CONFIGURATION KEYS. .. utiiiiiiiieeeeiteteeeatitea e riee e e s sseeea s sasbeeassaabeeeesaneeeassanbeeessanneeasanns 41
5.8 EXAMPLEScii ittt 42
G T 18 7 N I RSP 43
G0t R I PP 43
6.2 FILE FORMAT ...ttt ettt ettt ettt ettt e e et e e e e bt e e e s s nbe e e e e aabe e e e e aabbeeessanbeeeeeanneeeanann 43
6.3 INTERFACE FUNCTIONS.uttiiiiiiieieaiiteeeeatttea e ettt e e s ettt e e s snbe e e s saabeeeessasbeeassanbeeeasanneeeasanns 44
6.4 DATA STRUCTURES.cetttiutttaeauttetaaateteasaatseeasaaubeeeesaaseeeasaasbeeasaaabeeeesaasseeasaanbeeeasansseeasanns 45
6.5 FILES 1ot 45
6.6 CONFIGURATION KEYS. .. uiiiiiiuiieeeeiietee e ettt e e e rte e e e s sttt ea s ssbe e e s saabeeeessneeeassanbeeeesaneeeasann 46
TRANSIMS-LANL-1.0 — Files— May 1999 Page 5

LA-UR —99-2579

B.7 EXAMPLESci ittt ettt n e 46

7. NETWORK ottt bbb e 47
7.1 TERMS ... bbb 47
7.2 FILEFORMAT .ottt b bbb 49
7.3 INTERFACE FUNCTIONSottt e 71
7.4 DATA STRUCTURES.......coiitiimtiiteiste sttt sttt se st se st se b ae st s s ean e 82
7.5 UTILITY PROGRAMScuiiiiiii it e 93
T8 FILES .o e e 94
7.7 CONFIGURATION KEYS.....uiiiiiiiiiiii i 94
7.8 EXAMPLES ...ttt e 95

8. SIMULATION OQUTPUT ..viiiiiiiiic ittt sn s 107
8.1 TERMS ... e bbb 107
8.2 FILE FORMAT ...ttt e e e 107
8.3 OUTPUT FILTERINGcuiiiiiiiiiii i e 115
8.4 INTERFACE FUNCTIONS ..ottt e e 116
8.5 DATA STRUCTURES.......coumuiiieiniisiei sttt sttt b e s 126
8.6 UTILITY PROGRAMS ...ttt e e 133
8.7 FILES .t 134
8.8 CONFIGURATION KEYS.....cuiiiiiiiiiiiiiiici i 135
8.9 EXAMPLES ...ttt bbb 139

9. EMISSIONSESTIMATOR......coiiiiiiiicitic i 150
0.1 TERMS ... e e bbb 150
0.2 FILE FORMAT ..ottt e e 150
9.3 UTILITY PROGRAMSoouiiiiiiii i e e 155
0.4 FILES ..ot bbb e 156
0.5 EXAMPLES ...ttt bbb 156

10. ITERATION DATABASEcciiiiitiiiiiic it 164
101 TERMS ..ot bbb s e 164
10.2 FILEFORMAT ..ot e 164
10.3 INTERFACE FUNCTIONSooiiiiiiiiiiiinis i e 164
10.4 DATA STRUCTURES........coiiteuinteieie sttt st ae e 171
10.5 UTILITY PROGRAMScouiiiiiiiiii it e 172
10.6 FILES ..o s 172

I 0 = Q1 U 173
111 TERMS o bbb e e 173
112 USAGE. ..o b e 173
11.3 INTERFACE FUNCTIONSoiiiiiiiiiiiinic e e 175
114 DATA STRUCTURES.......cccoiiteuistiiniesteisie ettt st ae s ae s 180
115 UTILITY PROGRAMSoccuiiiiiiiiii i 183
116 FILES..iiiii s 185
117 EXAMPLES ..ot 185

12, VISUALIZATION ciiiiiiiiiicitic ittt bbb 187

TRANSIMS-LANL-1.0 - Files— May 1999 Page 6

LA-UR —99-2579

J2.1 TERMS .ottt sttt st e e n e s R e nn e ane e e nnr e e nnneena 187

12.2 FILE FORMAT ittt sttt e s e s e e s nmn e e sne e e snne e e nnneennneena 187
12.3 UTILITY PROGRAMSeiiiiiiititee ettt ee ettt e ettt e e s ate e e e s sbe e e s sanbee e e s aasbeeesaanbeeasaannneeasanns 188
J2.4 FILES .o iieieiiee ettt ettt e e n e ennneena 189
13. CONFIGURATION ..iiiiitiiietieeeeeesssissaseeaseesesssssssaseeaeeaesssssnssssseseeseeasnsssssnensaesasanns 190
131 TERMS ettt et ettt st e s s e nn e a e nnneena 190
13.2 FILE FORMAT ettt sttt et et sn e s e s nmn e e sne e e snne e e nnreennneena 190
13.3 INTERFACE FUNCTIONS ..cciiiutttteiitieeaeattteaeerateeeeeaste e e s ssbeeassambeeeesaseeeessanbeeassannneeananns 190
13.4 DATA STRUCTURES.......cctiiiiutttteaatettaeaitteeasaareeaasasseeassasbeeassabeeeesansseeesaasseeassansseeasanns 191
13.5 UTILITY PROGRAMSutiiiiiititee et tee ettt e e ettt e e sttt e e e s sbe e e s s anbee e e s asneeesaanbeeaesannneaanaans 191
G T o | PSPPSRI 191
13.7 CONFIGURATION KEYS...cii ittt iiiiiee et ee ettt ettt e s st e e s snbe e e s snbeeassennneeanaans 192
13.8 EXAMPLESoeiiiteie ittt siree st e et e s me e s e s nn e s s nn e ane e n e nnneena 192
14. @ 1] €1 N 199
R I Y 1 PP PPV R PRTTR 199
14.2 INTERFACE FUNCTIONS ...cciiiutttteeitieeaeatteeeeasateee e e sttt e e s smbeeassanbeeeesssseeesanbeeassannneeananns 199
JA.3 FILES .ot iieieiiee ettt et n e a e e nnr e nnneena 200
T4.4 EXAMPLESoetiiteieiteee it ssree st e st esme e s e e am e e s ne e e san e e e s e e nn e e nne e e nnn e nnr e nnneena 200
15. L = N1 = 201
TRANSIMS-LANL-1.0 — Files— May 1999 Page 7

LA-UR —99-2579

1. INTRODUCTION

The Transportation Analysis and SIMulation System (TRANSIMS) is sponsored by the U.S.
Department of Transportation, the Environmental Protection Agency, and the U.S. Department of
Energy. Los Alamos National Laboratory is leading this mgjor effort to develop new, integrated
transportation and air quality forecasting procedures necessary to satisfy the Intermodal Surface
Transportation Efficiency Act and the Clean Air Act and its amendments.

This document provides specifications for the complete set of files used by TRANSIMS,
descriptions of the C programming language interface functions used to read and write these files,
and examples of thefiles. Figure 1 below shows the major filesused in TRANSIMS and their
relationship with the TRANSIM S software modules. All except theiteration database and index
filesarein standard | SO text format. The C interface libraries provide functions for reading and
writing thefiles, and data structures in which records from the files can be stored in memory.

e —_———— —_———— — — — — — — — — — -

$ / (/ Traveler (/ . (/ / Air Quality ((Arbitrary Box{
— Census Transit Network

T)) suvey) |) | J) surveys |) Dpaa
54 - — - L — L < — L L — —
o

=

0

o

3 Population Activity Route Traffic Micro- Emissions Output
§ Synthesizer Generator Planner simulator Estimator Visualizer
0

Q

(I

-

=]

(=1

=

S

o

o3 Synthetic . . Traveler Simulation Emissions MODELS3
§_ }Population Activity Vehicle Plans Output Inventory Database
c

Figure 1: Interrelationship between TRANSIM S data files and software modules. The files
appearing in the top row are only used as input by software modules whereas the files
appearing in the bottom row are output by one module and input by one or more other
modules.

Table 1 gives therequired and optional tables for the various TRANSIM S executable programs.

" These functions are callable from most C++, FORTRAN, and PASCAL language implementations, too.

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 8

Table 1: Optional tablesfor TRANSIM S executable programs.

Veh. Act. Rt. Traf. Emis.

DataFile Gen. Gen. Plan. Micro. Estim.
PUMS E

STF-3A E

MABLE E

Land Use E

Traveler Survey E

Nodes E E E E E E
Links E E E E E E
Speeds O* O

Pocket Lanes M O

Lane Use O* O

Parking M M M*
Barriers o*

Transit Stops o* O] o*
L ane Connectivity M* M

Turn Prohibition o* o*
Unsignalized M

Nodes

Signalized Nodes ©)

Phasing Plans ©)

Timing Plans ©)

Signal @)
Coordinators

Detectors O

Activity Locations M M M M M

Process Links M M*

Study Area Links M

Transit Routes O O

Transit Schedules O O

Transit Vehicles O O

Key: E = essentia
M = needed, but can be generated automatically
O = optional, but used if supplied
* = not used by current TRANSIMS release, but will be used eventually

Note that the tables that are optional or that can be generated automatically may be essential for

the realism needed for certain types of traffic planning studies. Also, additional techniques may
become available for generating data in the optional tables (e.g., traffic contrals).

NOTE: The symbol M s used to indicate items that apply to the June release only.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 9
LA-UR —99-2579

2. SYNTHETIC POPULATION

The TRANSIMS synthetic population system is designed to produce populations (family
households, non-family households, and group quarters) that are statistically equivalent to actual
populations when compared at the level of block group or higher. The methodology used by this
system is described in Reference Volume 2—Software, Part 1—Modules, Section 1. Theinputsto
the software are U.S. Census Bureau data (STF3A and PUMS) and MABLE/GEOCORR data.
Census Bureau STF3A and PUMSS data formats are commonly used and are available on CD-
ROM from the Census Bureau—these data inputs will not be described in any detail in this
document. MABLE/GEOCORR data is rdatively new, and is described in Reference Volume 2—
Software, Part 1—Modules, Section 1.1.

2.1 Terms

Population Persons grouped in households.

Demographics Characteristics of a household or person.

Tract U.S. Census Bureau tract number.

Block Group U.S. Census Bureau block group number.

PUMS U.S. Census Bureau Public Use Microdata Sample.

PUMSHousehold ID The PUMS household ID number from which the synthetic population
was derived.

TRANSIMSID Unique number assigned to each household and person. Must be greater
than zero.

Home L ocation The home location of the household and all persons in the household.

This number isthe ID of a TRANSIMS activity location and is unique for
each TRANSIMS transportation network.

2.2 File Format

The synthetic population file contains two header lines, followed by the data lines.

2.2.1 Header Lines

Thefirst line of the file contains the household demographic and user data information. The
second line of the file contains person demographic information.

2.2.1.1 Format

Theformat of thelinesis:

<text>: <description denog/datal> ... <description denog/dataN>

TRANSIMS-LANL-1.0 — Files— May 1999 Page 10
LA-UR —99-2579

The <t ext > entry may be any text comment that is meaningful to the user. The<t ext > entry
MUST befollowed by acolon (:). A singleword description of each of the optional household
demographics in thefile follows the colon. Each optional household data item that is present in the
household data lines of the file must have a single word description in the household header line
(line 1 of thefile). Each person demographic that is present in the person data lines of the file must
have a single word description in the person demographic line (line 2 of thefile). The singleword
description must not contain white space.

2.2.1.2 Example

Househol d Denogr aphi cs: PUVBHH R18UNDR RWRKR89 RHHI NC
Per son Denographi cs: AGE RELAT1 SEX WORK89

The household data lines in a file with this header will have four optional household demographic
values (PUMSHH, R18UNDR, RWRKR89, and RHHINC). The person data linesin a file with
this header will have four person demographic values (AGE, RELAT1, SEX, and WORK®89).

2.2.2 Data Lines

Thedata for a single synthetic household span multiple lines of the synthetic population file.
2.2.2.1 Format

Thefirst line of a household record contains the household data:

<TRACT ID> <Blck Gp ID> H <TRANSIMS HH | D> <# persons> <# vehicl es> <Hone | ocation> [<HHDatal> ... <HHData2>]

<TRACT ID> and <Blck Grp ID> are the census tract and block group numbers. The tract
numbers are represented as an integer with the following characteristics. Tract number 1 or 1.00 is
represented as 000100. Tract number 1.01 is represented as 000101. The block groups retain
ther integer value.

The home location isthe ID of the home activity location on a TRANSIMS network. A value of -1
may be used if the home location is not known yet. Every household must eventually be assigned a
home location of a TRANSIMS activity location before using TRANSIM S modules.

Following the household data are N lines, where N = number of persons in the household, of
person data.

<TRANSI M5 HH | D> P <TRANSI M5 Person | D> [PersonDenpgl> ... <PersonDenpgN>]

The household and person demographics/data in the file, both number and type of the data, depend
on the demographics and data used to generate the population.

2.2.2.2 Example

Household 1000 with four persons, two autos, home location of 1253, and demographics of
PUMSHH (17643), R1BUNDR (1), RWRKR89 (3), and RHHINC (38800). Person
demographics for each member of the household are AGE, RELAT1, SEX, and WORKS89.

Househol d Denographi cs: PUVSHH RL8UNDR RWRKR89 RHHI NC
Per son Denogr aphi cs: AGE RELAT1 SEX WDORK89

TRANSIMS-LANL-1.0 — Files— May 1999 Page 11
LA-UR —99-2579

00001 00002 H 1000 4 2 1253 17643 1 3 38800
1000 P 101 38 0 0 1
1000 P 102 36 1 1 1
1000 P 103 7 2 10
1000 P 104 4 2 1 O

2.3 Interface Functions

The synthetic population subsystem has C structures and utility functions that are used to read and
write synthetic population data from TRANSIM S synthetic population files.

Thefunction get Next Synt het i cHH() reads a synthetic household from the population file. The
function stores the information in a static data structure (Synt het i cHHDat a) and returns a
pointer to the static data. The Synt het i cHHDat a structure cannot be modified by the calling
program. The data should be copied if it needs to be changed. The functions

wri t eSynt heti cPopHeader () andwriteSyntheti cHH() areusedtocreatea TRANSIMS

synthetic population file.

2.3.1 moreSyntheticHH
Sgnature. int noreSyntheti cHH(FI LE* const fp)

Description: Boolean function used to control iteration through the synthetic population
file

Argument: fp —FI LE* for the synthetic population file that must be open for reading.

Return Value: 1if not at end of synthetic population file.
0 if EOF has been reached.

2.3.2 getNextSyntheticHH
Sgnature: const Synt heti cHHDat a* get Next Synt heti cHH(FI LE* const fp)

Description: Reads a synthetic household from the synthetic population file. Parses and
converts the values from the file and stores them in the static
Synt het i cHHDat a structure.

Argument: fp —FI LE* for the synthetic population file that must be open for reading.

Return Value: Theaddress of a static Synt het i cHHDat a structure containing the data read
fromthefile. Returns NULL on error.

2.3.3 writeSyntheticPopHeader

Sgnature: int witeSyntheti cPopHeader (FILE* const fp, char*
hh_header, char* p_header)

Description: Writes the header lines in the synthetic population file.

Theformat of thelineis:
<t ext >: <denogl> <denpg2> ...<denogN>

TRANSIMS-LANL-1.0 — Files— May 1999 Page 12
LA-UR —99-2579

Example:
Househol d Denogr aphi cs: PUVBHH R18UNDR RWRKR89 RHHI NC
Per son Denographi cs: AGE RELAT1 SEX WORK89

Argument: f p — pointer to synthetic population file that must be open for writing with
the file pointer positioned at the beginning of thefile.
hh_header — string containing the household header information.
p_header - string containing the person header information.

Return Value: 1 on success.
Oonerror.

2.3.4 writeSyntheticHH

Sgnature: int witeSyntheti cHH(FILE* const fp, const
Synt het i cHHDat a* hh)

Description: Writes the given Synt het i cHHDat a into the given synthetic population file.

Argument: f p —FI LE* to the synthetic population file that must be open for writing.
dat a — address of a Synt het i cHHDat a structure containing the data to be
written.

Return Value: 1 on success.
Oonerror.

2.4 Data Structures

2.4.1 SyntheticPersonData

This structureis used to hold synthetic person information.

t ypedef struct synPersonData_s

{
/** TRANSI M5 Person ID. **/
I NT32 f Personl D;

/** Array of person denographic information. **/
I NT32 *f Per sonDenogr aphi cs;

} Syntheti cPersonDat a;

2.4.2 SyntheticHHData
This structureis used to hold synthetic household information.

typedef struct synHHdata_s

/** The Census Tract | D of the household. **/
I NT32 fTract;

TRANSIMS-LANL-1.0 — Files— May 1999 Page 13
LA-UR —99-2579

/** The Bl ock group I D of the household. **/
I NT32 f Bl ockG oupl D;

/** The TRANSI M5 Household ID. **/
I NT32 f HHId;

/** The nunber of persons in the household. **/
i nt f Nunber Per sons;

/** The nunber of vehicles owned by the household. **/
i nt f Nunber Vehi cl es;

/** The home | ocation of the household — a TRANSIMS activity
* |location ID.

*/

I NT32 f HonelLocati on;

/** Nunber of data itenms in the househol d denographi cs/data array. **/
i nt fNunber HHDenogr aphi cs;

/** Array of househol d denographic/data information. **/
| NT32 *f HHDenogr aphi cs;

/** Nunber of denopgraphics in the person denographics array. **/
i nt f Nunber Per sonDenogr aphi cs;

/** Array of synthetic person records, one for each nenber of the
* househol d.

* The nunber of valid entries in this array is given by

* the fNunberPersons field.

*/

Synt heti cPer sonDat a *f Per sons;

} Syntheti cHHDat a;

2.5 Files

Table2: Synthetic population library files.

Type FileName Description
Binary Files |[libT10.a TRANSIMS Interfaces library

Source Files | synpopio.h | Defines synthetic population data structures and interface functions
synpopio.c | Synthetic population interface functions source file

TRANSIMS-LANL-1.0 — Files— May 1999 Page 14
LA-UR —99-2579

2.6 Configuration Keys

Table 3 below lists the TRANSIMS configuration file keys that specify the location of synthetic

population data files.

Table 3: Synthetic population file configuration keys.

Configuration Key Description

POP_ NUMBER HH

The number of households to be generated.

POP_BASELINE_FILE

Basdline synthetic population files—not located on a transportation
network.

POP_LOCATED_FILE

Synthetic population file containing population located on a specific
transportation network.

POP_STARTING_VEHICLE_ID

Thefirst vehicle ID to be assigned. Other vehicles will be
numbered sequentially from this starting number.

POP_STARTING_HH_ID

Thefirst household ID to be assigned. Other synthetic households
will be numbered sequentially from this number.

POP_STARTING_PERSON_ID

Thefirst person ID to be assigned. Other synthetic persons will be
numbered sequentially from this number.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 15

LA-UR —99-2579

2.7 Examples

This example program reads a synthetic population file, then writes the synthetic population data
to an output file.

#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude <l O synpopi o. h>

mai n(int argc, char *argv[])

{
FI LE *i nf p;
FI LE *outfp;
const SyntheticHHData *h = NULL;
char *hdr1 = "Househol d Denographi cs: PUMS PUVSHH D RARKR89 RHHI NC';
char *hdr2 = "Person Denographi cs: AGE SEX WORK89";
int count = O;
if (argc < 3) {
fprintf(stdout, "Usage: prog <input file> < output file>\n");
exit(0);
infp = fopen(argv[1], "r");
if (tinfp) {
fprintf(stdout, "Failed to open input file %\n", argv[1]);
exit(0);”
outfp = fopen(argv[2], “wW);
if (toutfp) {
fprintf(stdout, “Failed to open output file %\n”, argv[2]);
exit(0);
wr it eSynt heti cPopHeader (outfp, hdrl, hdr2);
whil e (nmoreSyntheti cHH(i nfp)) {
h = get Next Synt heti cHH(i nf p);
count ++;
writeSyntheti cHH(outfp, h);
}
fprintf(stdout, “Read/ Wote % househol ds\n”, count);
fcl ose(infp);
fcl ose(outfp);
}
TRANSIMS-LANL-1.0 — Files— May 1999 Page 16

LA-UR —99-2579

3. ACTIVITIES

This section gives the protocol for theinteraction of the TRANSIMS activity sets with the
TRANSIMS planner and microsimulation.

3.1 Terms

Activity Something that a person in a household does. Each activity has parameters
associated with it including priority, location, starting time, ending time, and
duration.

Household One or more persons with a common home location.
L ocation A TRANSIMS Network Activity Location.

M ode The mode type of the transportation between activities: i.e,, car, bus, walk.

3.2 File Format

A population is assumed to bein place. Each household in this population has a location on the
TRANSIMS network and a unique household ID. Each person in the household also has a unique
ID. A baseset of activitiesis generated for each household in the population. These activities are
modified by feedback from both the planner and the microsimulation.

The activity filefor the base set of activitiesis an ASCI| file containing the activity data.

Activities for a household are grouped sequentially in the activity file. Each line of the file contains
tab-ddimited data fields for a single activity. Table 4 defines the meaning and format of the
activity data fields. For most fields, the entry —1 denotes an unspecified value.

Thereferencetimeis taken as 0.00 (midnight of thefirst day). All times are decimal numbers that
dencote the number of hours from 0.00. Note that each time should be given to a minimum of two
decimal places to capture minutes and four decimal placesif seconds are necessary. Each activity
has a start time, end time, and duration range. The preferred time for each of theseis givenin
terms of the two parameters of a beta distribution, f(t) =C(t- L)**(U - t)>* where, Cisa
constant, L isthelower bound of thetime, U is the upper bound, and a and b are the parameters

that specify the distribution. The mean of the distribution is b ; @a=1 and b=1 gives a uniform
a

distribution between L and U, and the larger a and b are, the more peaked the distribution.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 17
LA-UR —99-2579

Table4: Activity data definitions and format.

Fidd Description Allowed Values

Household ID Each household has a unique household ID. integer
Each Group Quarters is given one household ID.

These numbers are assigned in the population
file.

PersonlD Each person is given a unique ID in the integer
population file.

Activity Type Two types are fixed and should always have these | integer: 1 through n:
values: Home =1, Work = 2. Definition of other | Example:
activity types may vary. Meaning of theinteger |1 =Home
value must be specified for each activity set. 2 =Work

3 =Shop
= Activity Types generated by the NISS 4 = School
Activity Generator have the following meanings: |5 = Other
0 = home, 1 =work, 2 = shop, 3 = schoal, 4=
visit, 5 = other.

Activity Priority A Oisan activity of lowest priority; a priority of |integer: 0-9
9 means the activity must be done.

Starting Time L ower Bound Earliest time the activity can start. decimal

Starting Time Upper Bound L atest time an activity can start. decimal

Preferred Starting Time a Thetime the router will use as the best guess for | decimal

parameter the starting time. If this number is -1, the
average of the upper and lower bounds is used.

Preferred Starting Timeb Thetime the router will use as the best guess for | decimal

parameter the starting time. If this number is -1, the
average of the upper and lower bounds is used.

Ending Time Lower Bound The earliest time the activity can end. decimal

Ending Time Upper Bound The latest time the activity can end. decimal

Preferred Ending Time a Thetime the router will use as the best guess for | decimal

parameter the activity ending time. If this number is -1, the
average of the lower and upper bounds is used.

Preferred Ending Timeb Thetime the router will use as the best guess for | decimal

parameter

the activity ending time. If this number is -1, the
average of the lower and upper bounds is used.

Duration Lower Bound Shortest length of the activity. decimal
Duration Upper Bound Longest length of the activity. decimal
Duration a parameter Therouter will usethis as the best guess of the decimal
activity duration. If this number is—1, the
average of the upper and lower bound is used.
Duration b parameter Therouter will usethis as the best guess of the decimal
activity duration. If this number is—1, the
average of the upper and lower bound is used.
Mode Preference for Arriving | This number represents a grammar string that integer

at the Activity

defines the mode preference to the route planner
(wew, wt, ...). The correspondence between
integer values and possible grammar stringsis
contained in an external file. Thefile defines
special modes for passengers in a private auto as
well as activities where no travel is done (start
and end at the same location).

TRANSIMS-LANL-1.0 — Files— May 1999

LA-UR —99-2579

Page 18

Field Description Allowed Values
VehicleID Thevehicle ID for all activities with a mode integer

preference of private auto, either as driver or as
passenger. This field should be set to -1 for all

other modes.
Number of Possible Locations | The number of possible locations in the List of -1, integer 3 1
for Activity Locations fidd if valueis 1 or greater. Thevalue

Oisnot allowed. If thisfiedis—1, the single
valueintheList of Locations field is an index
into a group of activities.

List of Activity Locations If the Number of Possible Locationsfieldis1 or |integer [integer] ...
greater, thisfield contains a list of activity
location IDs where an activity may take place. If
the Number of Possible Locations fidd is—1, this
field contains a number that is an index into a
group of activities.

Number of Other Participants | The number of othersin the population who integer
in the Activity might participate and use the same transportation
(e.g., thesame car). The number isOif the
person isto travel aloneto the activity.

List of Other Participants Person IDs of other participants using the same | [integer] [integer] ...
transportation. This field should be present only
when the value of the Number of Other
Participants field is > 0. If this personisthe
driver of the car, thislist contains the person IDs
of the other passengersinthecar. If this person
is a passenger in the car, thislist contains the
person ID of the driver.

Activity Group Number Every activity for an individual will have a integer
number. Sets of activities that must be done
together will have the same number.

3.3 Interface Functions

The activity subsystem has C structures and utility functions that are used to read and write
activity data from a TRANSIMS activity file. These functions assume that all of the activities for
a household are grouped sequentially in the TRANSIMS activity file.

Thefunctions get Next Acti vi ty() and get Next Househol d() read an activity/household
from an activity filein ASCII format. The functions store the information in static data structures
(Acti vi t yDat a) and return a pointer to the static data. The Act i vi t yDat a structures or arrays
cannot be modified by the calling program. The data should be copied if it needs to be changed.

ThefunctionswriteActivity() andwiteHousehol d() accepttheActi vityData
structures containing the information to be written as arguments.

Theread functions provide a mechanism for iterating through the activity file reading either
individual activities or the activities for a household. The write functions can writea single
activity or a household' s activities to thefile.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 19
LA-UR —99-2579

3.3.1 moreActivities
Sgnature. int noreActivities(FILE * const fp)

Description: Boolean function used to control iteration through the activity file.
Argument: fp — FILE * for the activity file, which must be open for reading.

Return Value: 1if not at end of activity file
0 if EOF has been reached

3.3.2 getNextActivity
Sgnature: const ActivityData * getNextActivity(FILE * const)

Description: Reads an activity from the activity file. Parses and converts the string values
from the file and storesthemin a static Act i vi t yDat a structure. Allocates
storagefor thef O her Parti ci pant sLi st andf Locat i ons arrays based
on datain thefile.

Argument: fp — FILE * totheactivity, which must be open for reading.

Return Value: Theaddress of an unmodifiable Act i vi t yDat a structure containing the
activity data from thefile. Returns NULL on error.

3.3.3 getNextHousehold

Sgnature: const ActivityData * get Next Househol d(FI LE * const fp,
int* arraySi ze)

Description: Reads the activities for a household from the activity file.
Constructsan Act i vi t yDat a structure for each activity in the household.

Parses the activities and stores them in an array of Acti vi t yDat a
structures.

Argument: fp — FILE * totheactivity file, which must be open for reading.
Return Value: Anarray of unmodifiable Act i vi t yDat a structures that contains the

activity data for the household. Returns NULL on error. The number of
activities for the household is returned in the ar r ay Si ze argument.

3.3.4 writeActivity
Sgnature: int witeActivity(FILE * const fp, const ActivityData

* dat a)
Description: Writesthe given Act i vi t yDat a into aline of the given activity file.

Argument: fp — FILE * totheactivity file, which must be open for writing

TRANSIMS-LANL-1.0 — Files— May 1999 Page 20
LA-UR —99-2579

dat a — address of an Act i vi t yDat a structure containing the data to be
written.

Return Value: 1 on success.
Oonerror.

3.3.5 writeHousehold

Sgnature. int witeHousehol d(FILE * fp, ActivityData
* data, int arraySize)

Description: Writes the activities for a household into the given file.

Argument: fp — FILE* totheactivity file, which must be open for writing.
dat a — address of an Act i vi t yDat a array containing the household
activity data to be written.
arraySi ze — the number of activities in the data array.

Return Value: 1 on success.
Oonerror.

3.4 Data Structures

3.4.1 ActivityTimeSpec

This structureis used for activity time specifications.

t ypedef struct act_time_spec_s

/** The | ower bound of the tinme interval. **/
REAL f Lower Bound;

[** The upper bound of the time interval. **/
REAL f Upper Bound;

/[** The A paraneter for the beta distribution. **/
REAL f APar anet er;

/** The B paraneter for the beta distribution. **/
REAL f BPar anet er;

} ActivityTi meSpec;

Each activity has a start time, end time, and duration range. The preferred time for each of theseis
given in terms of the two parameters of a beta distribution, f(t)=C(t-L)**(U-t)**, whereCisa
constant, L isthelower bound of thetime, U is the upper bound and a and b are the parameters
that specify the distribution. The mean of the distribution is a/(a+b); a=1 and b=1 givesa
uniform distribution between L and U. Larger values for a and b result in a more peaked
distribution. If the a and/or b parameter is equal to -1.0, an average of the lower and upper bound
will be used.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 21
LA-UR —99-2579

Thereferencetimeis taken as 0.00 (midnight of thefirst day). All times are decimal numbers that
dencote the number of hours from 0.00. Note that each time should be given to a minimum of two
decimal places to capture minutes and four decimal places if seconds are necessary.

3.4.2 ActivityData

This structure is used to store the data for a single activity as defined by one line in the activity file.

typedef struct actdata_s

{
/** The household Id. **/
| NT32 f Househol dl d;

/[** The person Id. **/
| NT32 f Personld;

/** Activity type. An integer value representing

* the activity type such as hone, work, school, shopping,
* other, wait at transit stop,

**/

I NT32 f Type;

/** Priority ranking of the activity in the range 0 - 9,

* where O is the lowest priority and 9 neans the activity
* must be done.

**/

INT32 fPriority;

/** Integer value defining transportati on node used to arrive
* at the activity.
**/

| NT32 f MbdePr ef er ence;

/** The I D of the vehicle to be used when the node preference is private
* auto, either as a driver or passenger. Set to -1 for all other node
* preferences.

**/

I NT32 f Vehicl el d;

/** The nunber of |ocations where the activity can take pl ace.

* This field is used to provide information about the

fActivityG oupl ndex and f Possi bl eLocati onsLi st fields.
A value of 1 or greater indicates that the fPossibl eLocationsLi st
contains a list of locations for the activity.
A value of -1 indicates that the fActivityG ouplndex field

* contains an index nunber into a group of activities.
**/

| NT32 f Possi bl eLocati ons;

* % ok F

/** The nunber of other people that will participate in the activity
* and use the same transportation. Value is O if the person is

* traveling alone to the activity. |If the value is > 0, a list

* of the IDs of the other participants is entered in the

* fQtherPartici pantsList array.

**/

I NT32 f O her Parti ci pants;

TRANSIMS-LANL-1.0 — Files— May 1999 Page 22
LA-UR —99-2579

/** Nunber of the activity for this individual. Every activity for
* an individual has a nunber. Goups of activities that nust be

* done together have the sane nunber.
**/

I NT32 fActivityG oupNunber;

/** An array of personlds for other participants in the activity

* that will use the sanme transportation. There are no valid entries

* inthis array if the value of fQtherParticipants is O.
**/

I NT32 *fCt herPartici pant sLi st;

/** Index into a group of activities (integer).
* Used only when val ue of fPossiblelLocations is -1.
**/

I NT32 fActivityG oupl ndex;

/** An array of possible locations (integer |IDs) where
* the activity will occur. Used when val ue of

* fPossibleLocations is 1 or greater.

**/

I NT32 *fLocati ons;

/** Preferred start time for the activity. The ActivityTi neSpec

* structure contains the specification paranmeters for a beta

* distribution of the preferred tine.
**/

ActivityTi meSpec fStart;

/** Preferred end time for the activity. The ActivityTi meSpec
* structure contains the specification paranmeters for a beta

* distribution of the preferred tine.
**/

Acti vityTi meSpec fEnd;
/** Preferred duration for the activity. The ActivityTi meSpec

* structure contains the specification paranmeters for a beta

* distribution of the preferred tinme.
**/

ActivityTi meSpec fDuration;

} ActivityDat a;

3.5 Files

Table5: Activity library files.

Type FileName Description

Binary Files |[libT10.a TRANSIMS Interfaces library

Source Files | actio.h Defines activity data structures and interface functions
activityio.c | Activity interface functions sourcefile

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 23

3.6 Configuration Keys

Table 6 below lists the TRANSIMS configuration file keys that specify the location of activity

data files.

Table6: Activity file configuration keys.

Configuration Key Description

ACT_FULL_OUTPUT

Thefile containing a complete activity set generated from a
population.

ACT_PARTIAL_OUTPUT

Thefile containing activities from a partial activity generation
for specified persons.

ACT_FEEDBACK_FILE

Thefile containing a list of travelers and associated commands
for activity regeneration.

ACT_WORK_LOC_ALPHA

The alpha parameter used to generate work locations in the
simplified activity generator.

ACT_WORK_LOC_BETA

The beta parameter used to generate work locations in the
simplified activity generator.

ACT_WORK_LOC_GAMMA

The gamma value used to generate work locations in the
simplified activity generator.

ACT_TIME_ALPHA

The alpha parameter used to generate activity timesin the
simplified activity generator.

ACT_TIME_BETA

The beta parameter used to generate activity timesin the
simplified activity generator.

ACT_MODE_ALPHA

The alpha parameter used to generate mode choicein the
simplified activity generator.

ACT_MODE_BETA

The beta parameter used to generate mode choicein the
simplified activity generator.

ACT_WORK_LOCATION_OPTION

The option used to select the work location algorithm in the
simplified activity generator.

ACT_MODE_CHOICE_OPTION

The option used to select the mode choice algorithm in the
simplified activity generator.

ACT_HOME_HEADER

The user data column header in the network activity location file
used to specify single family home locations.

ACT_MULTI_FAMILY_HEADER

The user data column header in the network activity location file
used to specify multifamily home locations.

ACT_WORK_HEADER

The user data column header in the network activity location file
used to specify work locations.

ACT_ACCESS_HEADER

The user data column header in the network activity location file
used to specify access to transit.

ACT_TRACT_HEADER

The user data column header in the network activity location file
used to specify census tract.

ACT_BLOCKGROUP_HEADER

The user data column header in the network activity location file
used to specify block group.

TRANSIMS-LANL-1.0 — Files— May 1999

LA-UR —99-2579

Page 24

3.7 Examples

Read all of the households in the activity file, then write the activity information for the household
to another file. The data for each household is stored in an array of Act i vi t yDat a structures.

#i ncl ude <stdi o. h>
#i ncl ude <acti o. h>

int main(int argc, char *argv[])

{
FI LE *fp;
FI LE *outfp;
i nt nunber _activities;
const ActivityData *hh;
if (argc < 3) {
fprintf(stdout, “Usage: testact <activity input file> <activity output file>\n “);
exit(0);
}
fp = fopen(argv[1l], “r”);
if (fp == NULL) {
printf(“Failed to open file 9...exiting\n", argv[1]);
exit(0);
}
outfp = fopen(argv[2], “wW);
if (outfp == NULL) {
printf(“Failed to open file %...exiting\n", argv[2]);
exit(0);
while (nmoreActivities(fp)) {
hh = get Next Househol d(fp, &nunber_activities);
if (nunber_activities == 0) {
fprintf(stderr, “Failed to get household\n”);
} else {
wri t eHousehol d(outfp, hh, nunber_activities);
}
}
fclose(fp);
fcl ose(outfp);
return O;
}
TRANSIMS-LANL-1.0 — Files— May 1999 Page 25

LA-UR —99-2579

4. VVEHICLE

This section gives the protocol for the interaction of the TRANSIMS Vehicle library with the
TRANSIMS planner and microsimulation. Private vehicles are generated and assigned to
households by the TRANSIMSS population synthesizer. The activity generator assigns a set of
possible vehicles to each member of a household. Freight and transit vehicles (and the plans for
ther drivers) are generated by separate utilities, but must be included in the vehicle database. The
vehicle IDs assigned by these utilities must be unique.

4.1 Terms

Vehicle Any driver must have an associated vehicle.

Vehicle Type Vehicles can be classified in several ways: by network type (e.g., definitions used
inimposing lane use or turn prohibition restrictions); by usage (e.g., transit,
private auto, carpooal, jitney), which affects simulation; by performance
characteristics (e.g., length, acceleration profile); by emissions type (e.g.,
power/weight ratio). In this section, network typeis considered to be the primary
type.

4.2 File Format

Fidds in the vehicle file are tab- or space-ddimited.

Each line of the vehiclefile contains four mandatory fidds:
1) household ID

2) vehiclelD

3) ID of the starting location

4) the TRANSIMS network type of the vehicle

The TRANSIMS network vehicle type must be one of the following values:
1) 1=Auto

2) 2=Truck

3) 4=Taxi

4) 5=Bus

5) 6=Trolley

6) 7= StregtCar

7) 8= LightRail

8) 9= RapidRall

9) 10 = RegionaRail

Theline may contain optional integer fields whose meaning is user defined. The number of these
identifier fields may vary among different vehicle files. The number of optional identifier fields
must be the same on every line within avehicle file. Thevalue-1 is used as a default placeholder
value for both the starting location and optional integer fields when the values are unknown or
unused.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 26
LA-UR —99-2579

Format

<Househol d I D> <Vehicle ID> <starting |location> <network type> [<int 1> ... <int n>]

Example

Household 1460 has two vehicles (500100 and 500101); both start at the home location (78) and
are of network type auto (1). Two optional user-defined integer fields are present in thisfile. The
first field is the emissions vehicle type (10), which is the same for both vehicles. The second
integer field is an indicator of the maintenance level of the vehicle. Note that the second vehicle
(500101) has unknown/unused value (-1) for the second integer field.

1460 500100 78 1 10 30
1460 500101 78 1 10 -1

4.3 Interface Functions

The vehicle subsystem has C structures and utility functions that are used to read and write data
froma TRANSIMS vehiclefile.

Thefunction get Next Vehi cl e() reads vehicledatafrom avehiclefilein ASCII format. The
function stores the information in an unmodifiable data structure (Vehi cl eDat a), and returns a
pointer to the structure. Since the Vehi cl eDat a structure cannot be modified by the calling
program, the data should be copied if it needs to be changed.

Thefunctionwr i t eVehi cl e() takesaVehi cl eDat a structure as an argument containing the
information to be written. Theget Next Vehi cl e() function combined with the

nmor eVehi cl es() function provides a mechanism for iterating through the vehicle file reading
the vehicle data.

4.3.1 moreVehicles
Sgnature: i nt noreVehicles(FILE * const fp)

Description: Boolean function used to control iteration through the vehiclefile.
Argument: fp — FILE * for thevehiclefile that must be open for reading.

Return Value: 1if not at end of vehiclefile
0 if EOF has been reached.

4.3.2 getNextVehicle
Sgnature: const Vehicl eData * get Next Vehicl e(FILE * const fp)
Description: Reads a line of vehicle data from the vehiclefile. Parses and converts the
string values from the file and stores them in the static Vehi cl eDat a
structuref Vehi cl e.

Argument: fp — FILE * tothevehiclefile, which must be open for reading.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 27
LA-UR —99-2579

Return Value: Theaddress of a static Vehi cl eDat a structure containing the vehicle data

read from thefile. Returns NULL on error.

4.3.3 writeVehicle

Sgnature: int witeVehicle(FILE * const fp, const VehicleData

* dat a){

Description: Writes the given Vehi cl eDat a into aline of the given vehiclefile.

Argument: fp — FILE * tothevehiclefile, which must be open for writing.

dat a — address of a Vehi cl eDat a structure containing the data to be
written.

Return Value: 1 on success.

Oonerror.

4.4 Data Structures

4.4.1 VehicleData

This structureis used to store the data for a single vehicle as defined by one line in the vehiclefile.

typedef struct vehdata_s

{
/** The household Id. **/
I NT32 f Househol dl d;

/** The vehicle ID. **/
I NT32 f Vehicleld;

/** The ID starting location of the vehicle. -1 is used if
* the starting location is unknown or to indicate that the
* route planner should choose the starting |ocation.

**/

I NT32 fStartingLocati on;

/** The TRANSI M5 networ k vehicl e type.

1

E o T T I R

=
RPOOWOO~NOUIAN

*

**/

Must be one of the follow ng val ues:

Aut o

Truck

Taxi

Bus

Trol | ey

St reet Car

Li ght Rai |
Rapi dRai |
Regi onal Rai |
Unknown

I NT32 f Net wor kVehi cl eType;

/** The nunber of values in the fldentifiers array. **/
I NT32 f Nunber | dentifiers;

TRANSIMS-LANL-1.0 — Files— May 1999 Page 28
LA-UR —99-2579

/** Optional array of user defined integer val ues.

* The nunber of entries in the array is variable

* but nust be the sanme for every line of the file.

* |f no user-defined values are present in the file,
* fldentifiers will be NULL.

**/

INT32 *fldentifiers;

} Vehi cl eDat a;

4.5 Files

Table7: Vehiclelibrary files.

Type File Name Description

Binary Files |libTIO.a The TRANSIMS Interfaces library
Source Files | vehio.h Defines vehicle data structures and interface functions
vehio.c Vehicleinterface functions sourcefile

4.6 Examples

Read all of the data in the vehicle file then write the vehicle information to another file. The data
for each vehicleis stored in a Vehi cl eDat a structure.

#i ncl ude <stdi o. h>
#i ncl ude <vehi o. h>

int main(int argc, char *argv[])

{

FILE *fp;

FILE *outfp;

i nt count = 0;

const Vehi cl eDat a *veh;

if (argc < 3) {
fprintf(stdout, “Usage: testveh <veh input file> <output file>\n");
exit(0);

fp = fopen(argv[l1l], “r”);

if (fp == NULL) {
printf(“Failed to open file 9%...exiting\n", argv[1]);
exit(0);

}

outfp = fopen(argv[2], “w);

if (outfp == NULL) {
printf(“Failed to open file %...exiting\n”, argv[2]);
exit(0);

whil e (nmoreVehicles(fp)) {
veh = get Next Vehi cl e(fp);
if (veh == NULL) {

fprintf(stderr, “Error FAILED to get vehicle...exiting\n”);
br eak;
TRANSIMS-LANL-1.0 — Files— May 1999 Page 29

LA-UR —99-2579

}

count ++;
if ('witeVehicle(outfp, veh)) {
fprintf(stderr, “Failed to wite vehicle %\ n”, veh>fVehicleld);

}
fcl ose(fp);
fcl ose (outfp);
return O;
}
TRANSIMS-LANL-1.0 — Files— May 1999 Page 30

LA-UR —99-2579

5. PLAN

This section gives the protocol of the TRANSIMS planner file interface with the microsimulation.

5.1 Terms
Plan A plan consists of a sequence of trips.
Trip A trip consists of a sequence of (unimodal) legs. There will be atrip between each

pair of activities specified in the activity file. Therewill also beatrip consisting
of asingle non-transportation leg for each activity. Each trip starts and ends at an
activity location accessory as specified in the activity file.

Leg A (unimodal) leg describes a traveler’ s movement through the network. A leg
must start and end at an accessory. The leg contains such information as
departure time, transportation mode, and route through the network.

Accessory See Network section below.

5.2 File Format

The TRANSIMS code supplies alibrary of C routines aswell asa TPl an C++ object that can
read and write this format.

Theformat consists of a required header and a set of mode-dependent data. The header contains
information common to every kind of leg. Code that uses the plans may choose to ignore some or
all of the mode-dependent data. For example, the CA microsimulation will not simulate walking or
bicycling, but will use the estimated duration from the planner. Since the origin, destination, and
expected duration of any leg are available in the header information, the simulation does not need
any data in the mode-dependent part of awalk leg.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 31
LA-UR —99-2579

5.2.1 Data Definitions and Format

Table8: Plan data definitions and format.

Column Name Description Allowed Values
Traveler (Person) ID Each person is given a unique ID in the population file. integer
User Fidd Available to the user to set as desired. Itsvalueis not used integer
internally by the simulation, but is passed to the output system for
usein filtering.
Trip ID !\lumbers thetrips f.or the.traveler sequentially from 1. Thetrip ID unsigned 16-bit
is not used by the simulation. .
integer
LegID Numbers the legs within a trip sequentially from 1. integer
First Leg Flag Not used. boolean
Last Leg Flag Not used. boolean

Activation Time

The earliest time the simulation needs to worry about thisleg. It
is generally the starting time (estimated by the planner) for aleg.
For atransit leg, however, it represents the arrival time of the
passenger at the transit stop, rather than the arrival time of the
transit vehicle.

integer: seconds
since midnight

Start Accessory ID

Denotes the network accessory ID of the starting location for this
leg.

unsigned long

Start Accessory Type

Denotes the type of accessory of the corresponding location. It is
necessary because the IDs are not globally unique over accessories.
It should be one of:

1) activity location

2) parking

3) transit stop
as definedin TNet Accessory: : EType of NET/Accessory.h.

integer

enumeration

End Accessory ID

As above, except it is for the destination rather than the starting
accessory.

unsigned long,

integer
End Accessory Type As above, except it is for the destination rather than the starting unsigned long,
accessory. .
integer
Duration In conjgnctiqn with Stop Time and Max Time Flag, specifies how integer: seconds
long this leg is expected to take.
Stop Time In conjunction with Stop Time and Max Time Flag, specifies an integer: seconds
absolute ending time for this leg. since midnight
Max Time Flag If true, the end of t.his activity is bG§t estimated as . boolean
max(start time + duration; stop_tine).
Otherwise, use the minimum instead. In the simulation, the actual
start timeis used, rather than the estimated activation time.
Driver Flag True, if thetraveler is driving a vehicle on this leg. boolean
Mode Mode of travel. This, together with the driver flag, determines the integer, enumeration

interpretation of the mode-dependent data following the header.
Currently, it must be one of:

0-car

1 - transit

2 - pedestrian

TRANSIMS-LANL-1.0 — Files— May 1999

LA-UR —99-2579

Page 32

Column Name Description Allowed Values
3 - bicycle
4 - non-transportation activity
asdefinedinthe TPl an: : ETr avel Mode enumof
PLAN/Plan.h.

Vehicle Type Type of vehicle. Currently, it must be one of:
0 - walk
1-auto

2 —truck

3 —hicycle

4 — taxi

5—bus

6 — trolley

7 — street car

8 — light rail

9 — rapid rall

10 — regional rail

integer, enumeration

Number of Tokens Number of white-space-separated tokens in the mode-dependent integer
data block (not including num_tokens itself).

The plan file contains a series of records, each of which specifies asingle leg of atraveler’ strip.
Each record contains the fields shown in the table above, in the order shown, separated by white
space (space(s), tab(s), and/or a single newling). The field names are not written in the data file.
Thereis ablank line separating each pair of records. Thefileiswrittenin ASCII text. Efficiency
concerns are addressed by accessing plan files through an index. Seethe Index section for details.

The combination of Duration, Stop Time, and Max Time Flag allows flexible specification of

departuretimes. For example, attending a movie might be encoded as:

duration = 0 seconds;

stop tine = 20*3600 + 30*60 = 73800;

maxTi me = true;
which means, “this activity ends at 8:30 p.m., or as soon as the traveler arrives, whichever is
later.” Similarly, work might be encoded as:

duration = 8 hours;

stop tine = 173600 = 61200;

maxTi me = true;
which means “ stay at work until 5:00 p.m., or eight hours after arrival, whichever is later.”
Shopping at lunch might be encoded as:

duration = 0.5 hours;

stop time = 12*3600 + 45*60 = 45900;

maxTi me = fal se;

which means “ shop for half an hour or until 12:45 p.m., whichever is earlier.”

TRANSIMS-LANL-1.0 — Files— May 1999 Page 33
LA-UR —99-2579

5.2.2 Mode-dependent Data

M ode-dependent data is written by the TRANSIMS router and interpreted by the TRANSIMS

microsimulation.

Table9: Mode-dependent datafor a car driver.

Data Description Allowed Values
VehicleID Each vehicle (with its D) available in the simulation is integer
listed in the vehicle database.
Number of Passengers | The number of passengers, not including the driver, on integer
this leg.
List of Node IDs The nodes (in order) through which the driver’s route will | integer
pass.
List of Passenger IDs | Thetraveler ID of each passenger to be carried on this leg. | integer
Table10: M ode-dependent data for a car passenger.
Data Description Allowed Values
VehicleID [Each vehicle (with its ID) availablein the simulation islisted inthe |integer
vehicle database.
Table11: Mode-dependent datafor atransit driver.
Data Description Allowed Values
VehicleID Each vehicle (with its ID) availablein the simulationislisted | integer
in the vehicle database.
Route ID Route | Ds are specified in the transit route file. Only oneroute | integer
ID is allowed per leg.
List of NodeIDs | The nodes (in order) through which the driver’s route will pass. | integer

Table12: Mode-dependent data for atransit passenger.

Description

Allowed Values

RouteID | Traveler will board any transit vehicle whose driver’s plan matches
this Route ID.

integer

Table13: M ode-dependent data for a pedestrian.

Description

Allowed Values

List of NodeIDs | The nodes (in order) through which the traveler’ s route will
pass.

integer

For activity legs, there is no mode-dependent data.

TRANSIMS-LANL-1.0 — Files— May 1999

LA-UR —99-2579

Page 34

5.3 Interface Functions

The plan subsystem has C structures and utility functions that are used to read and write plan data
froma TRANSIMS plan file. The plans are stored in ASCII format in a plan file. The majority of
the time required for reading a plan from disk lies in converting the ASCI| representation of
numbers into another format. Thus, for efficiency in those cases where only one or two fidds of a
plan record are required, we provide routines that read the record in as an ASCI|I string and allow
conversion of particular fields from the string, as well as routines that read the string and convert
every fidd.

Thefunction get Next Leg() reads a plan record from a plan filein ASCII format. The functions
store the information in static data structures (LegDat a) and return a pointer to the static data.
TheLegDat a structures or arrays cannot be modified by the calling program. The data should be
copied if it needs to be changed.

Thefunctionwri t eLeg() acceptstheLegDat a structures containing the information to be
written as arguments. The read functions provide a mechanism for iterating through the plan file.
Thewrite functions can write a single plan record to thefile.

5.3.1 getNextLeg
Sgnature: const LegData * const getNextLeg(FILE * const fp)

Description: Reads aleg fromthelegfile. Parses and converts the string values from the
fileand stores them in the static LegDat a structuref Leg. Allocates storage
for thef Dat a array based on data in thefile.

Argument: fp—FI LE * totheleg file, which must be open for writing.

Return Value: Theaddress of aLegDat a structure containing the leg data read from the
file. Returns NULL on error.

5.4 Data Structures

5.4.1 LegData

This structureis used for modal leg data.

typedef struct plandata_s

{
/** The TravlD field. **/
UNI T32 fTravld;

/** The User field. **/
I NT32 f User;

[** The fTrip field. **/
I NT32 fTrip;

/** The Leg field. **/

TRANSIMS-LANL-1.0 — Files— May 1999 Page 35
LA-UR —99-2579

| NT32 fLeg;

/[** The FirstLeg field. **/
I NT32 fFirstLeg;

/** The LastlLeg field. **/
I NT32 f Last Leg;

/** The ActivationTine field. **/
I NT32 fActivationTi nme;

/** The StartAcc field. **/
I NT32 fStartArc;

[** The StartAccType field. **/
I NT32 fStart AccType;

/** The EndAcc field. **/
I NT32 f EndAcc;

/** The EndAccType field. **/
| NT32 f EndAccType;

/** The Duration field. **/
I NT32 fDuration;

[** The StopTinme field. **/
| NT32 f St opTi ne;

[** The MaxTinme field. **/
I NT32 f MaxTi ne;

/** The DriverFlag field. **/
I NT32 fDriverFl ag;

/** The Mode flag. **/
| NT32 f Mode;

/** The Vehicl eType field. **/
I NT32 f Vehi cl eType;

} LegDat a;
5.5 Utility Programs

5.5.1 PlanFilter

PlanFilter provides sorting, merging, selection and validation of plans. It constructs two indexes
for each input and output plan fileit touches, one sorted by time and the other by traveler.
Currently existing indexes are used if they are up-to-date. If the -v option is used, only valid plan
sequences are included in the indexes, and an index of invalid plansis built. All timesare
measured in seconds since midnight.

Usage:

TRANSIMS-LANL-1.0 — Files— May 1999 Page 36
LA-UR —99-2579

PlanFilter [-h] [-d] [-f] [-W] [-v netConfigFile] [-s startTime] [-e endTinme] [-t travld]*
[-r <travFile>] [-0 <outFile>] <planFile>*

where:
h = print this message
d = defragment the file: create a new plan file containing the merged, filtered plans;
the -o flag must accompany this flag
f = sort output by traveler
v = validate each trip chain:
net Confi gFi | e must bea TRANSIMS configuration file specifying a network
database (Validation may be time-consuming.)
s = include only legs whose (estimated) departuretimeis>=st art Ti me
e = include only legs whose (estimated) arrival timeis <= endTi nme
t = include only legs for traveler t r avl d; implies the -f flag
(May appear an arbitrary number of times.)
r = include only legs for travelers specified int r avFi | e; implies the -f option
(May appear together with the -t options.)
0 = place output in out Fi | e; default is standard output
Arguments that do not start with “-” are assumed to be input plan files.

5.5.2 DistributePlan

5.5.2.1 Overview

The purpose of thistool isto create a separate pair of indexes into a plan file for each processor in
amultiprocessor run of the microsimulation. Each leg of atrip is assigned to the processor that
has responsibility for the starting accessory of that leg. This allows the processors to get travelers
into the simulation more efficiently than if each processor had to read in every leg, discarding those
that it did not need.

5.5.2.2 Algorithm

DistributePlans uses a mapping from accessory type and ID to CPU number. This mapping, or
partition, is created during a simulation run as specified by the values of certain configuration file
keys. It issaved in afile specified by the PAR_PARTITION_FILE key if the
PAR_SAVE_PARTITION key isset. Notethat, if run timeinformation is saved during the
simulation (using the PAR_RTM_INPUT_FILE) and that information is used to partition the
network on the next run (by setting the CA_USE_RTM_FEEDBACK key), the partition can
change from one run to the next.

DistributePlans can also generate the partition if noneis present. In this case, the partition can be
saved and used by the microsimulation (by turning off both the PAR_USE_METIS_PARTITION
and PAR_USE_OB_PARTITION keys).

DistributePlans creates an index file for each processor in the partition, using a simple naming
convention that allows the individual slavesto find the correct index fileif it exists.

For each leg in a plan file specified by the PLAN_FILE configuration key, DistributePlans
determines the starting location’ s accessory type and ID. Next, it finds the processor number

TRANSIMS-LANL-1.0 — Files— May 1999 Page 37
LA-UR —99-2579

assigned responsibility for that location. Finally, it places an index entry for theleg in thefile for
that processor. The underlying data is not moved.

Thereis one additional task handled by DistributePlans. When a trip’s legs are distributed, it
becomes difficult for any processor to know whether a particular leg represents thefirst or last leg
atraveler will undertake during the course of the simulation. This information is required because
on atraveler’sfirst leg, the associated object must be created within the simulation. On all other
legs, the traveler object must not be created—instead the simulation must wait for the traveler
object to arrive at that leg' s starting location before allowing it to continue. Similarly, but not
quite as importantly, efficient use of memory requires deleting the traveler object at theend of it’s
last leg.

DistributePlans ensures that the appropriate information about each traveer is made available to
the simulation. It places anindex entry for thefirst leg of each traveler’ strip into each distributed
index. This, in combination with the ability of the microsimulation to use both atraveler ID sorted
index and a time sorted index allows it to correctly create and destroy travelers.

5.5.2.3 Usage

Di stributePl ans <config-file>
5.5.2.4 Configuration Keys

Thekeys listed in Table 14 are used when a partition already exists.
Table14: Keysif a partition exists.

Configuration Key Description
PAR_PARTITION_FILE | Name of afile providing a mapping from nodes to processors. This file also
includes node coordinates, so it can be used to display the partition.

PLAN_FILE The name of a plan file to distribute over the partition.
NET_* The configuration file should also contain all the NET_ keys.
TRANSIMS-LANL-1.0 — Files— May 1999 Page 38

LA-UR —99-2579

Thekeys listed in Table 15 are used to generate a partition if one does not already exist.
Table15: Keysto generate a partition.

PARTITIONER_USE NETWORK_CACHE If set, the code will read in a binary cached version
of the network.

GBL _CELL LENGTH Thelength of a CA cdll in meters.

PAR MIN_CELLS TO SPLIT Splitting short links can cause problems in the

dynamics of the microsimulation. No links with
fewer cdls than this will be split.

PAR _SLAVES The number of processors in the partition.

PAR RTM_PENALTY_FACTOR, See the description in the software modules volume,
PAR _RTM _INPUT _FILE, Microsimulation section on configuration keys.

CA _USE RTM_FEEDBACK

PAR _HOST_COUNT, These parameters are used to describe the machine
PAR HOST_CPUS <n>, environment. Relative processor speed will be

PAR HOST SPEED <n> taken into account when creating the partition.
PAR_USE_METIS PARTITION, If PAR_USE METIS PARTITION is s, the
PAR_USE_OB_PARTITION partition will be determined using the METIS graph

partitioning library. If

PAR_USE OB _PARTITION anis s&t, orthogonal
bisection algorithm will be used. If neither is set,
the partition specified in the
PAR_PARTITION_FILE will be used.
PAR_SAVE PARTITION The partition will be saved in
PAR_PARTITION_FILE only if thisis set.

5.5.2.5 Troubleshooting

If avery large number of processors are used, the algorithm may run into an operating system limit
on the number of open file descriptors allowed.

Distributing the indexes makes the plan-reading phase of the microsimulation more efficient.
However, there may be 1/0O considerations that are important when a large number of processors
are trying to gain access to the same underlying data files. This problem could be addressed by
using the PlanFilter tool to create a separate data file for each of the indexes created and the
IndexPlanFile toal to recreate the indexes, now pointing at the distributed plan files instead of a
global file.

5.6 Files

Table16: Plan library files.

Type FileName Description

Binary Files |libTIO.a TRANSIMS Interfaces library.
SourceFiles | planio.c Defines plan data structures and interface functions.
planio.h Plan interface functions sourcefile.
TRANSIMS-LANL-1.0 — Files— May 1999 Page 39

LA-UR —99-2579

5.7 Configuration Keys

Table17. Plan file configuration keys.

Configuration Key
PLAN_FILE

Description

Location of afile containing plans, or the base name of an
index which points to plan files. Used by the Route Planner
for output and the microsimulation and Selector for input.

CA_USE_PARTITIONED_ROUTE_FILES

If this key is set, the simulation expects to find separate
indicesinto a plan file for each slave. These can be
produced using a partition file and the DistributePlans
utility.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 40

LA-UR —99-2579

5.8 Examples

Table 18 gives a six-leg plan for traveler 1. It is awalk-car-walk-bus-walk plan.

Table18: Annotated example of a plan.

Trip/Leg Plan Description
Tripl/Legl |1 156 1110 The user has chosen to mark this leg with the code 156, which has meaning only to that
25200 123 1 456 user but will be duly reported in any output concerned with thisleg. Itistrip 1, leg 1
33 25200 1 for thistraveler. Itisthefirst legto be simulated for this traveler, but not thelast. The
02 planner expects thetrip to start at 25200 = 7+ 3600 = 7 AM. The leg will start at
2 activity location 123 and end at parking accessory 456. The planner expectsthetrip to
1000 1001 take 33 seconds. Thetraveler’s next leg will begin upon arrival at the destination or 33
seconds after departure from the origin, whichever islater. Thetraveler isnot driving a
vehicleand is, in fact, walking (mode = 2). There are two tokens of mode-dependent
data, which in this case might be the nodes traversed. The CA microsimulation would
probably simply use the planner’ s estimated duration and place thetraveler in the
destination queue 33 seconds after hisarrival at the origin. However, the simulation
could also choose to estimate its own duration. The microsimulation will not use the
node information.
Tripl/Leg2 |1 156 1 200 Leg 2 of trip 1 is neither thefirst nor thelast. Thetraveler will be driving (driver flag =
25233 456 2 789 1) acar (mode = 0) from parking accessory 456 to parking accessory 789 viathe 16
1314 0 1 nodes 1-16 using vehicle 0, carrying no passengers. The expected start timeis 7:00:33
180 am., and the expected duration is 1314 seconds.
00
1234567829
10 11 12 13 14 15 16
Tripl/Leg3 |1 156 1 3 0 0 Traveler 1 picks up one passenger (traveler 1000) and drives to parking accessory 10
26547 789 2 10 2 vianodes 17 and 18.
127 0 1
10
5
01
17 18
1000
Tripl/Leg4 |1 156 1 400 Thetraveler walks (mode = 2) from parking accessory 10 to bus stop (accessory type =
26674 10 2 11 3 3) 11. Theplanner, knowing that the simulation will not simulate walking, has chosen
8020 1 not to write out the details of the path the walker will take (Number Of Tokens = 0).
0
Tripl/Leg5 |1 156 1 500 Thetraveler will ridein (driver_flag = 0) thefirst bus (mode = 1) arriving on route 72,
26704 11 3 4 3 from bus stop 11 to bus stop 4.
1502 0 1
01
1
72
Tripl/Leg6 |0 156 1 0 O Thetraveler takes 31 seconds to walk from bus stop 4 to activity location 5.
28206 4 351
3101
12
0
Trip2/Legl |1 156 2 0 1 Thisisthefirst leg of trip 2 for traveler 1. Sincethelast leg flagis s, it isalso thelast

28237 5151
28800 61200 1
14

0

leg that will be simulated. It isan activity (mode = 4) that ends at 5:00 p.m. (=17 *
3600 = 61200 seconds) or eight hours (= 8 * 3600 = 28800) after arrival, whichever
islater. Thereisno data associated with this leg, although the planner could, in
principle, add anything—a list of projects the person will be working on, alist of
groceriesto buy, etc.

TRANSIMS-LANL-1.0 — Files— May 1999

LA-UR —99-2579

Page 41

6. TRANSIT

This section discusses how to describe transit routes for the TRANSIMSS planner and
microsimulation.

6.1 Terms

Transit Refers to vehicles traveling on pre-specified routes, stopping at specific accessory
locations listed in the Transit Stop network data table, and attempting to follow a
predetermined schedule.

Route A transit routeis a sequential set of transit stops visited by atransit vehicle. Each

routeis assigned an integer ID. No transit route may include the same transit stop
more than once. For example, the inbound and outbound portions of a round trip
must be assigned different route IDs. Also, two transit vehicles that follow the
same path through the network but stop at different places along the path (for
example, an express and local train) must have different route IDs.

Trangit Stop Anaccessory as defined in the Transit Stop network data table.

6.2 File Format

Thetransit network topology is described by the transit route file (configuration parameter
TRANSIT_ROUTE_FILE). Thisisan ASCII text filelisting the Transit Stop IDs at which
vehicles on each transit route are allowed to stop.

Thetransit schedule is described by the transit schedule file (configuration parameter
TRANSIT_SCHEDULE_FILE). Thisisa ASCII text file listing information needed by the
planner to determine paths through the transit network.

6.2.1 Transit Route File Format

The Transit Route Fileis an ASCI| text file whose fields are separated by white space (space(s),
tab(s), or newling(s)). For each route, thefile contains the route ID, the number of transit stops the
route visits, and alist of the ID of each stop, in the order visited. The column names are not part
of the datafile.

Table19: Transit routefile data definitions and for mat.

Column Name Description Allowed Values
Transit Route ID A unique identifier for this route. integer
Number of Stops The number of transit stop IDs to follow. integer
List of Transit Stop IDs | IDs of the transit stops this route visits, in the order integer
encountered.
TRANSIMS-LANL-1.0 — Files— May 1999 Page 42

LA-UR —99-2579

6.2.2 Transit Schedule File Format

The Transit Schedule Fileis an ASCI|I text file whose fields are separated by white space
(space(s), tab(s), or newling(s)). Thefile must be sorted by Vehicle ID, Transit Route ID, and time
— inthat order.

Table20: Transit schedulefile data definitions and for mat.

Column Name Description Allowed Values

Vehicle D Vehicle IDs are defined in the vehiclefile. integer

Transit Route ID A unique identifier for this route. integer

Time Arrival time at the stop. integer: seconds
since midnight

Link ID IDs of the link on which the transit stop resides. integers

Destination Node ID | ID of the node toward which the vehicle is heading. integer

Transit Stop ID ID of this transit stop, as specified in the network data tables. | integer

6.3 Interface Functions

Thetransit subsystem has C structures and utility functions that are used to read and write data
froma TRANSIMS vehiclefile.

Thefunction get Next Tr ansi t () readstransit datafrom atransit filein ASCII format. The
function stores the information in an unmodifiable data structure (Tr ansi t Dat a), and returns a
pointer to the structure. Since the Tr ansi t Dat a structure cannot be modified by the calling
program, the data should be copied if it needs to be changed.

Thefunctionwri t eTransi t () takesaTransi t Dat a structure as an argument containing the
information to be written. Theget Next Transi t () function combined with the

nmor eTransi t () function provides a mechanism for iterating through the transit file reading the
transit data.

6.3.1 moreTransitData
Sgnature: int noreTransitData(FlILE * const fp)

Description: Boolean function used to control iteration through the transit file.
Argument: fp — FILE * for thetransit file that must be open for reading.

Return Value: Returns 1 if not at end of transit data file.
Returns O if EOF has been reached.

6.3.2 getNextTransitData
Sgnature: const TransitData * getNextTransitData (FILE * const fp)

Description: Reads transit data from the transit data file.

Argument: fp —FI LE * tothetransit data file, which must be open for reading.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 43
LA-UR —99-2579

Return Value: Theaddress of a Tr ansi t Dat a structure containing the transit data read
from thefile. Returns NULL on error.

6.3.3 writeTransitData

Sgnature: int witeTransitData(FILE * const fp, TransitData *
dat a) ;

Description: Writesthe given Tr ansi t Dat a into aline of the given transit datafile.

Argument: fp —FI LE * tothetransit data file, which must be open for writing.
dat a — address of a Tr ansi t Dat a structure containing the data to be
written.

Return Value: 1 on success.
Oonerror.

6.4 Data Structures

6.4.1 TransitData

This structureis used for transit data as specified in the transit routefile.
typedef struct transitdata_s

/** The route Id. **/
| NT32 f Rout el d;

/** The nunber of stops. **/
| NT32 f Nunfst ops;

/** An array of stoplds for the stops. **/
| NT32 *f St opl Ds;

} TransitDat a;

6.5 Files

Table21: Transit library files.

Type FileName Description

Binary Files |libTIO.a TRANSIMS Interfaces library

Source Files | transitio.c Defines transit data structures and interface
functions

transitio.h Transit interface functions sourcefile

TRANSIMS-LANL-1.0 — Files— May 1999 Page 44
LA-UR —99-2579

6.6 Configuration Keys

Table22: Transit file configuration keys.

Configuration Key
TRANSIT_ROUTE_FILE

Description
The name of atransit route file whose format is described Table 19.
Used as input by the microsimulation and the Route Planner.

TRANSIT_SCHEDULE_FILE

The name of atransit schedule file whose format is described above.
Used as input by the microsimulation.

6.7 Examples

In the example, note that

routes 1 and 2 together comprise a round trip
routes 8 and 10 stop in the same places
routes need not be consecutively numbered
stops need not be listed in numerical order

(3]

(o3}

SOOU'I-P\IG)@OON@OO\IG:U‘H—\
N

TRANSIMS-LANL-1.0 — Files— May 1999 Page 45

LA-UR —99-2579

7. NETWORK

The TRANSIMS network representation provides detailed information about streets, intersections,
signals, and transit in aroad network. This section discusses the concepts involved in describing a
road network and the TRANSIM S data table formats. In our analysis of road networks, we have
relied on traffic engineering practice as described in references [Do 97], [GHA 88], [ITE 85],
[ITE], [MM 84], [Or 93], and [PP 93].

7.1 Terms

Node A nodeisthe part of the network corresponding to a vertex in graph theory.
Nodes typically occur at intersections in the road network. A node must be
present where the network branches and where the permanent number of
lanes changes. A laneis considered permanent if it is not a temporary,
pocket lane (see the definition of pocket lane below). A node may be
present where neither of the aforementioned occurs, however. Nodes are
not required where turn pockets start or end because these are not
considered permanent lanes. Each node has a traffic control associated
with it (null, unsignalized, pre-timed, actuated, coordinated, etc.).

Link A link is the part of the network corresponding to an edgein graph theory.
Links represent street and road segments. Each link has a constant number
of permanent lanes but may have a variable number of pocket lanes. A
link may have lanes in both directions; alternately, the lanes in opposite
directions may be on separate links (in which case no passing into
oncoming lanes is possible). Table 23 (at the end of this section) lists the
functional classes for links.

Lane A laneis wheretraffic flows on alink. Thelanes on each side/direction of
the link are numbered separately, starting with lane number one as the
leftmost lane (relative to the direction of travel). Each successive lane to
theright of it is numbered one greater than its predecessor. Pocket lanes
(i.e., turn pockets, merges, and pull-outs) are numbered in sequence, even if
they do not exist for the full length of thelink. A two-way left-turn lane, if
present, is considered to be lane number zero.

Pocket L anes A pocket laneis ether (a) aright- or left-turn pocket (alanethat starts
after the from node and ends at the to node), (b) aright or Ieft pull-out (a
lane that starts after the from node and ends before the to node), or (c) a
right or left merge pocket (alanethat starts at the from node and ends
beforetheto node). If alane starts at the from node and ends at the to
node, it is considered a permanent lane, not a pocket lane.

Barrier A barrier isadivider such as a curb or grade separation that prevents
vehicles from moving between two adjacent lanes on a link.

Parking Parking areas are located along links and are used as origins and
destinations for vehicletrips. Parking may be placed whereit is physically

TRANSIMS-LANL-1.0 — Files— May 1999 Page 46
LA-UR —99-2579

Transit Stop

L ane Connectivity

Traffic Control

Signal Coordinator

Unsignalized Node

Signalized Node

Phasing Plan

Timing Plan

Detector

Activity Location

Process Link

Study/Buffer Areas

located in the network, or it may be placed in aggregate generic parking
aress representing several of the driveways, lots, parking places, etc., on a
link. Places where vehicles leave the network are called boundary parking
arees.

A transit stop is alocation on a link where a transit vehicle, such as a bus
or light rail car, waits to embark and disembark passengers.

L ane connectivity specifies how lanes are connected across anode. Lanes
are numbered from the median and include turn pockets. Incoming and
outgoing links and lanes are defined relative to the node. For each
incoming lane on an incoming link, at least one outgoing lane must be
specified for each outgoing link that a vehicle on the incoming link can
transition to. Multiple outgoing lanes may be defined for an outgoing link,
if desired.

Each node has a traffic control associated with it. Thetraffic control
specifies how lanes are connected across the node and the type of sign or
signalized control that determines who has the right-of-way.

A signal coordinator is a device that controls the operation of one or more
traffic controls.

An unsignalized node represents the type of sign contral, if any, that is
present at an unsignalized node. Examples are stop and yield signs. Nodes
where only the number of permanent lanes is changing are generally
considered unsignalized.

A signalized node represents a traffic light. Each signal has atiming plan
and a phasing plan.

A phasing plan specifies the turn protection in effect for transitioning from
an incoming link to an outgoing link during a particular phase of a specific
timing plan.

A timing plan specifies the lengths of the intervals during the specific
phases for a traffic light. Many nodes may have the sametiming plan. 1t
is possible for each phase to transition to more than one phase if required.

A detector is a device that identifies the presence or passage of a vehicle
over an area of thelanes on alink.

An activity location is a place on a link where traveler activities (such as
work, home, shopping) can take place.

A processlink isa“virtual” connection between an activity location,
parking place, or transit stop and another activity location, parking
location, or transit stop; it represents the process of changing modes and
accounts for the cost (in time and money) of making a mode change.

The microsimulation distinguishes two types of links in its calculations:
Study area links are the links of interest for the traffic analyst. The output

TRANSIMS-LANL-1.0 — Files— May 1999

LA-UR —99-2579

Page 47

subsystem, for instance, records events such as when a vehicle leaves or
entersthe study area. The nature of the microsimulation makes it
necessary to simulate traffic on additional buffer arealinks. Typically,
these links form a fringe about two links thick around the study area. A
simulation includes buffer links in order to avoid edge effects such as when
vehicles enter the study area on its boundary; the buffer gives these
vehicles time to interact with other traffic and achieve realistic behavior
before entering the study area.

Table23: Functional classesfor links Do 97].

Name Interpretation

Freaway A divided, arterial highway for through traffic with full control of access. Full access control
means the authority to control access is exercised to give preference to through traffic by
providing access connections with selected public roads, but prohibiting grade crossings and/or
direct private driveway connections.

Expressway A divided, arterial highway for through traffic with partial control of access. Partial control of

access means that some authority is exercised to control access in the manner described above,
but there are crossings at grade and/or direct private driveway connections.

Primary Arterial

A major arterial roadway with intersections at grade crossings and direct access to abutting
property and on which geometric design and traffic-control measures are used to expedite safe
movement of through traffic.

Secondary Arterial | A minor arterial roadway with intersections at grade crossings and direct access to abutting
property and on which geometric design and traffic-control measures are used to expedite safe
movement of through traffic.

Frontage Road An arterial that runs paralld to a freeway or expressway.

Collector Street A roadway on which vehicular traffic is given preferential right of way, and at the entrances to
which vehicular traffic from intersecting roadways is required by law to yield right-of-way to
vehicles on such a roadway in obedience to either a stop sign or ayield sign, when such signs
are erected.

Local Street A street or road primarily for access to residence, business, or cther abutting property.

Freaway Ramp A unidirectional roadway providing connection between a freeway or expressway and an

arterial.

Zonal Connector

An imaginary (non-physical) connection to or from the centroid of a traffic analysis zone.

Other

Any roadway not fitting the above definitions.

Walkway A street restricted to use by pedestrians.
Busway A street restricted to use by buses.

Light Rail A roadbed restricted to use by light rail cars.
Heavy Rall A roadbed restricted to use by heavy rail cars.
Ferry A waterway crossed by ferry.

7.2 File Format

This section specifies the formats for the 19 data tables required to describe a TRANSIMS road
network. Table 24 shows how the tables depend on one another. The units of measurement are Sl
units—i.e., distances in meters, time in seconds, etc. Geographic coordinates are specified in the
UTM system. The TRANSIMS software architecture allows for the inclusion of additional
columns desired by an analyst, so the specification below gives only the required columns. The
format for data filesis ASCII, with columns delimited by tab characters; records are terminated by
anew-line character (i.e, 1SO format). Thefirst line of the file must contain the field names (i.e.,
column headings) delimited by tab characters.

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 48

Table24: Interdependencies between network tables.

Table Tables on which it depends

Link Node

Speed Node, Link, Pocket Lane
Pocket Lane Node, Link

Lane Use Node, Link, Pocket Lane
Parking Node, Link

Barrier Node, Link, Pocket Lane
Transit Stop Node, Link

L ane Connectivity

Node, Link, Pocket Lane

Turn Prohibition

Node, Link, Pocket Lane

Unsignalized Node

Node, Link, Pocket Lane

Signalized Node

Node, Timing Plan

Phasing Plan

Node, Link, Pocket Lane, Timing Plan

Detector

Node, Link, Pocket Lane

Signal Coordinator

Node, Signalized Node

Activity Location

Node, Link

Process Link

Parking, Transit Stop, Activity Location

Study Area Link

Link

7.2.1 Node Table

Table 25 specifies the format for the node table. To validate a node table, it is necessary to verify

the following:

Thefield names and types are correct.

The data values arein the legal ranges.

ThelDs are unique.

No nodes have the same easting, northing, and eevation. Nodes with the same easting and
northing, but different evations, are acceptable.

Table25: Nodetableformat.

Column Name Description Allowed Values
ID ID number of the node. integer: 1 through 2,147,483,647
EASTING The x-coordinate of the node (in meters, UTM | floating-point number
coordinate system).
NORTHING The y-coordinate of the node (in meters, UTM | floating-point number
coordinate system).
ELEVATION The z-coordinate of the node (in meters, UTM | floating-point number
coordinate system).
NOTES Character string used for data quality 255 characters
annotations; free format (may be blank).

TRANSIMS-LANL-1.0 — Files— May 1999

LA-UR —99-2579

Page 49

7.2.2 Link Table

Table 26 specifies the format for thelink table. To validate alink table, it is necessary to verify
the following:

Thefield names and types are correct.

The data values arein the legal ranges.

ThelDs are unique.

The nodes at the endpoints exist.

There are different nodes at the endpoints.

There are permanent lanesin at least one direction.

Thereis at least one permanent lane in every direction that thereis a pocket lane.
Thelength of thelink is at least as great as the distance between its endpoints.

Thelength of thelink is not far greater (e.g., 50% more) than the distance between its
endpoints.

The length of thelink is not exceedingly small. (The TRANSIMS microsimulation may have
difficulty simulating successive links that are less than about 50 meters long.)

The sum of the setback lengths is less than the length of the link.
All nodes have at least one incoming and one outgoing link.
At least some types of vehicles are allowed on the link.

Thefunctional classes of all of the links connected to a node are consistent: Divide the
TRANSIMS functional classes into three categories: (i) restricted—Freaway, Expressway; (ii)
surface—Primary Arterial, Secondary Arterial, Frontage Road, Collector, Local Street, Zonal
Connector, Other, Ferry, Walkway; (iii) miscellaneous—Ramp, Bikeway, Busway, Light Rail,
Heavy Rail. There areinconsistent functional classesif thereis a mixture of restricted and
surfacelinks at anode. (This notion can probably be refined further.)

The network graph is fully connected (i.e., one can reach any node from any other node).

The network does not contain modal sources or sinks. A modal source (sink) is a node
vehicles of a particular type can leave (enter), but cannot enter (leave).

The network does not contain unwanted modal islands. A modal island is a set of links for a
particular type of vehiclethat is disconnected from the rest of the links for that type of vehicle.
(There may be some cases, such as for transit routes, where modal islands are desirable.)

TRANSIMS-LANL-1.0 — Files— May 1999 Page 50
LA-UR —99-2579

Table26: Link tableformat.

Column Name Description Allowed Values
ID ID number of the link. integer: 1 through 2,147,483,647
NAME Name of stredt. 50 characters
NODEA ID number of the node at A. integer: 1 through 2,147,483,647
NODEB ID number of the node at B. integer: 1 through 2,147,483,647
PERMLANESA Number of lanes on the link heading toward | integer: O through 255
node A, not including pocket lanes.
PERMLANESB Number of lanes on the link heading toward | integer: O through 255
node B, not including pocket lanes.
LEFTPCKTSA Number of pocket lanes to the left of the integer: O through 255
permanent lanes heading toward node A.
LEFTPCKTSB Number of pocket lanes to the left of the integer: O through 255
permanent lanes heading toward node B.
RGHTPCKTSA Number of pocket lanes to theright of the integer: O through 255
permanent lanes heading toward node A.
RGHTPCKTSB Number of pocket lanes to theright of the integer: O through 255
permanent lanes heading toward node B.
TWOWAYTURN | Whether thereis atwo-way left-turnlanein | one character:
the center of thelink. ‘F =false/no
‘T' =truelyes
LENGTH Length of thelink (in meters). positive floating-point number
GRADE Percentage grade from node A to node B, floating-point number between —100
uphill being a positive number. and +100
SETBACKA Set-back distance (in meters) from the center | non-negative floating-point number
of the intersection at node A.
SETBACKB Set-back distance (in meters) from the center | non-negative floating-point number
of the intersection at node B.
CAPACITYA Total capacity (in vehicles per hour) for the | non-negative floating-point number
lanes traveling to node A.
CAPACITYB Total capacity (in vehicles per hour) for the | non-negative floating-point number
lanes traveling to node B.
SPEEDLMTA Default speed limit (in meters per second) for | positive floating-point number
vehicles traveling toward node A.
SPEEDLMTB Default speed limit (in meters per second) for | positive floating-point number
vehicles traveling toward node B.
FREESPDA Default free-flow speed (in meters per second) | positive floating-point number
for vehicles traveling toward node A.
FREESPDB Default free-flow speed (in meters per second) | positive floating-point number

for vehicles traveling toward node B.

TRANSIMS-LANL-1.0 — Files— May 1999

LA-UR —99-2579

Page 51

Column Name Description Allowed Values

FUNCTCLASS Functional class of thelink; alink that ten characters:
permits both road and rail traffic should be ‘FREEWAY'’ = freaway
coded with the roadway class. ‘XPRESSWAY’ = expressway

‘PRIARTER’ = primary arterial
‘SECARTER’ = secondary arterial
‘FRONTAGE' = frontage road
‘COLLECTOR’ = collector
‘LOCAL’ = local street

‘RAMP = freeway ramp
‘ZONECONN' = zonal connector
‘OTHER’ = other

‘WALKWAY' = walk only
‘BIKEWAY’ = bicycle only
‘BUSWAY’ = bus only roadway
‘LIGHTRAIL’ = light rail only
‘HEAVYRAIL’ = heavy rail

‘FERRY’ = ferry

THRUA Default through link connected at node A; a | integer: O through 2,147,483,647
zero indicates there is no through link.

THRUB Default through link connected at node B; a | integer: O through 2,147,483,647
zero indicates there is no through link.

COLOR The color number for the link (all of thelinks | integer: 1 through 63
connected to a given link must have different
colors).

VEHICLE Vehicle types (modes) allowed to use this string of characters separated by
link. slashes:

‘WALK’ = walking allowed
‘AUTO’ = private auto
‘TRUCK’ = motor carrier
‘BICYCLE' = bicycle

‘TAXI" = paratransit

‘BUS’ = bus

‘TROLLEY’ =trolley
‘STREETCAR’ = streetcar
‘LIGHTRAIL’ = light rail transit
‘RAPIDRAIL’ = rail rapid transit
‘REGIONRAIL’ = regional rail

NOTES Character string used for data quality 255 characters
annotations; free format (may be blank).

7.2.3 Speed Table

Entriesin the Speed Table are only required when the speed limit or free speed for alink varies for
different types of vehicles allowed to use thelink. The speeds that appear inthe Link Tables are
used as defaults for any vehicle types not specified in arecord in the Speed Table.

Table 27 specifies the format for the speed table. To validate a speed table, it is hecessary to
verify the following:

Thefield names and types are correct.

The data values arein the legal ranges.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 52
LA-UR —99-2579

The node and link references are correct.
The vehicle types are consistent with the vehicle types allowed on the link.

Table27: Speed tableformat.

Column Name
LINK

Description
ID number of the link with multiple speeds.

Allowed Values
integer: 1 through 2,147,483,647

NODE

ID number of the node toward which lanes
are headed.

integer: 1 through 2,147,483,647

SPEEDLMT

Speed limit (in meters per second) for
vehicles.

positive floating-point number

FREESPD

Free-flow speed (in meters per second) for
vehicles.

positive floating-point number

VEHICLE

Vehicle type(s) to which speeds apply.

string of characters separated by
slashes:

‘AUTO’ = private auto
‘TRUCK’ = motor carrier
‘BICYCLE' = bicycle

‘TAXI" = paratransit

‘BUS’ = bus

‘TROLLEY’ =trolley
‘STREETCAR’ = streetcar
‘LIGHTRAIL’ = light rail transit
‘RAPIDRAIL’ = rail rapid transit
‘REGIONRAIL’ = regional rail

STARTTIME

Starting time for the speeds.

a character string with the day of
week,

‘SUN’ = Sunday

‘MON’ = Monday

‘TUE’ = Tuesday

‘WED’ = Wednesday

‘THU'’ = Thursday

‘FRI' = Friday

‘SAT’ = Saturday

‘WKE' = any weekend day

‘WKD’ = any weekday

‘ALL’ = any day,

followed by the time of day (on a 24-
hour clock), for example
‘WKD13:20' is any weekday at 1:20
in the afternoon

ENDTIME

Ending time for the speeds.

specified like STARTTIME

NOTES

Character string used for data quality
annotations; free format (may be blank).

255 characters

TRANSIMS-LANL-1.0 — Files— May 1999

LA-UR —99-2579

Page 53

7.2.4 Pocket Lane Table

Table 28 specifies the format for the pocket lanetable. To validate a pocket lanetable, it is
necessary to verify the following:
Thefield names and types are correct.
The data values arein the legal ranges.
ThelDs are unique.
The node and link references are correct.
Thelane number isthat of avalid pocket lane.
The offset and length are consistent with the setbacks and length of the link.
None of the pockets overlap.
All of the pocket lanes specified in the link table are present.

Table28: Pocket lanetable format.

Column Name Description Allowed Values

ID ID number of the pocket lane. integer: 1 through 2,147,483,647
NODE ID number of the node toward which the pocket integer: 1 through 2,147,483,647
lane leads.
LINK ID number of the link on which the pocket lane integer: 1 through 2,147,483,647
lies.
OFFSET Starting position of the pocket lane, measured (in | non-negative floating-point
meters) from NODE (applicable to pull-out number
pockets only).
LANE Lane number of the pocket lane. integer: 1 through 255
STYLE Type of the pocket lane. one character:
‘T’ = turn pocket
‘P = pull-out pocket
‘M’ = merge pocket
LENGTH Length of the pocket lane (in meters); turn pockets | positive floating-point number
and merge pockets always start or end at the
appropriate limit line.
NOTES Character string used for data quality annotations; | 255 characters
free format (may be blank).

7.2.5 Lane Use Table

Entriesin the Lane Use Table are only required when a lane has restrictions for certain vehicle
types. The vehicle types specified in the Link Table are permitted unrestricted use of all lanes on
thelink when thereis no record in the Lane Use Table.

Table 29 specifies the format for the lane usetable. To validate alane usetable, it is hecessary to
verify the following:
Thefield names and types are correct.
The data values arein the legal ranges.
The node, link, and lane references are correct.
The vehicle types allowed for the parking are consistent with the vehicle types allowed on the

link.

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 54

Table29: Laneusetableformat.

Column Name
NODE

Description
ID number of the node toward which the lane
leads.

Allowed Values
integer: 1 through 2,147,483,647

LINK

ID number of thelink on which the lane lies.

integer: 1 through 2,147,483,647

LANE

Lane number.

integer: 1 through 255

VEHICLE

Vehicle type(s) to which restriction applies.

string of characters separated by
slashes:

‘HOVZ2' = high occupancy vehicle
with two or more occupants
‘HOV3' = high occupancy vehicle
with three or more occupants
‘HOV4' = high occupancy vehicle
with four or more occupants
‘BICYCLE' = bicycle

‘AUTO’ = private auto

‘TRUCK’ = motor carrier

‘BUS’ = bus

‘TROLLEY’ =trolley
‘STREETCAR’ = streetcar
‘LIGHTRAIL’ = light rail transit
‘RAPIDRAIL’ = rail rapid transit
‘REGIONRAIL’ = regional rail

RESTRICT

Type of lane restriction.

one character:

‘O’ = only this vehicle type may use
lane

‘R’ = lanerequired to be used by
this vehicle type

‘N’ = lane not allowed to be used by
this vehicle type

STARTTIME

Starting time for the restriction.

a character string with the day of
week,

‘SUN’ = Sunday

‘MON’ = Monday

‘TUE’ = Tuesday

‘WED’ = Wednesday

‘THU'’ = Thursday

‘FRI' = Friday

‘SAT’ = Saturday

‘WKE' = any weekend day

‘WKD’ = any weekday

‘ALL’ = any day,

followed by the time of day (on a 24-
hour clock), for example
‘WKD13:20' is any weekday at 1:20
in the afternoon

ENDTIME

Ending time for the restriction.

specified like STARTTIME

NOTES

Character string used for data quality
annotations; free format (may be blank).

255 characters

TRANSIMS-LANL-1.0 — Files— May 1999

LA-UR —99-2579

Page 55

7.2.6 Parking Table

Table 30 specifies the format for the parking table. To validate a parking table, it is necessary to
verify the following:

Thefield names and types are correct.

The data values arein the legal ranges.

ThelDs are unique.

The node and link references are correct.

The offset is consistent with the setbacks and length of the link.

The vehicle types allowed for the parking are consistent with the vehicle types allowed on the

link.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 56
LA-UR —99-2579

Table 30: Parking table format.

Column Name Description Allowed Values

1D

1D number of the parking place.

integer: 1 through 2,147,483,647

NODE

1D number of the node toward which vehicles are
traveling.

integer: 1 through 2,147,483,647

LINK

1D number of the link on which the parking place lies.

integer: 1 through 2,147,483,647

OFFSET

Location of the entrance from the link to the parking
place, measured (in meters) from NODE.

non-negative floating-point number

STYLE

Type of the parking place.

five characters:

‘PRSTR’ = parallel on street
‘HISTR' = head in on street
‘DRVWY’ = driveway

‘LOT’ = parking lot

‘BNDRY’ = network boundary

CAPACITY

Number of vehicles the parking place can
accommodate; zero for unlimited capacity.

integer: O through 65,535

GENERIC

Whether the parking place represents generic parking
(not an actual driveway, lot, etc., but a group/aggregate
of them used to simplify modeling).

one character:
‘T' =truelyes
‘F =false/no

VEHICLE

Type of vehicle(s) allowed to park at the parking place.

string of characters separated by slashes:
‘AUTO' = private auto
‘TRUCK’ = motor carrier
‘BICYCLE' = bicycle

‘TAXI" = paratransit

‘BUS =bus

‘TROLLEY’ = trolley
‘STREETCAR’ = streetcar
‘LIGHTRAIL’ = light rail transit
‘RAPIDRAIL’ = rail rapid transit
‘REGIONRAIL’ = regional rail
‘ANY’ = any vehicle type

STARTTIME

Starting time for parking.

a character string with the day of week,
‘SUN’ = Sunday

‘MON’ = Monday

‘TUE' = Tuesday

‘WED’ = Wednesday

‘THU’ = Thursday

‘FRI' = Friday

‘SAT’ = Saturday

‘WKE' = any weekend day

‘WKD'’ = any weekday

‘ALL’ = any day,

followed by the time of day (on a 24-hour
clock), for example ‘WKD13:20' is any
weekday at 1:20 in the afternoon

ENDTIME

Ending time for parking.

specified like STARTTIME

NOTES

Character string used for data quality annotations; free
format (may be blank).

255 characters

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 57

7.2.7 Barrier Table

m Barriers are not supported in |OC-2.

Table 31 specifies the format for the barrier table. To validate a barrier table, it is necessary to
verify the following:

Thefield names and types are correct.

The data values arein the legal ranges.

ThelDs are unique.

The node, link, and lane references are correct.

The offset and length are consistent with the setbacks and length of the link.

Table31: Barrier tableformat.

Column Name Description Allowed Values

ID ID number of the barrier. integer: 1 through 2,147,483,647

NODE ID number of the node toward which vehicles | integer: 1 through 2,147,483,647
aretraveling.

LINK ID number of the link on which the barrier integer: 1 through 2,147,483,647
lies.

OFFSET Starting position of the barrier, measured (in | non-negative floating-point number
meters) from NODE.

LANE Lane number of laneto theleft of the barrier. | integer: 0 through 255

STYLE Type of the barrier. ten characters:

‘CURB’ = curb

‘BARRIER’ = barrier

‘GRADESEFP = grade separation
‘STRIPE’ = painted stripe
‘TEMPORARY’ = temporary barrier

LENGTH Length of the barrier (in meters). positive floating-point number

NOTES Character string used for data quality 255 characters
annotations; free format (may be blank).

TRANSIMS-LANL-1.0 — Files— May 1999 Page 58
LA-UR —99-2579

7.2.8 Transit Stop Table

Table 32 specifies the format for the transit stop table. To validate a transit stop table, it is
necessary to verify the following:
Thefield names and types are correct.
The data values arein the legal ranges.
ThelDs are unique.
The node and link references are correct.
The offset is consistent with the setbacks and length of the link.
The vehicle types allowed for the transit stop are consistent with the vehicle types allowed on

thelink.

Table32: Transit stop table format.

Column Name

Description

Allowed Values

ID ID number of the stop. integer: 1 through 2,147,483,647
NAME Name of the stop. 50 characters
NODE ID number of the node toward which integer: 1 through 2,147,483,647
vehicles are traveling.
LINK ID number of the link on which the stop integer: 1 through 2,147,483,647
OCCurs.
OFFSET L ocation of the stop, measured (in meters) | non-negative floating-point number
from NODE.
VEHICLE Types of vehicles for which thisis a stop. string of characters separated by slashes:
‘BUS’ = bus
‘TROLLEY’ =trolley
‘STREETCAR’ = streetcar
‘LIGHTRAIL’ = light rail transit
‘RAPIDRAIL’ = rail rapid transit
‘REGIONRAIL’ = regional rail
STYLE Type of the stop. ten characters:
‘STOP' = stop (no station)
‘STATION'’ = station
‘“YARD’ = vehicle storage lot
CAPACITY Number of vehicles the stop can integer: O through 65,535
simultaneously handle; zero for unlimited
capacity.
NOTES Character string used for data quality 255 characters

annotations; free format (may be blank).

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 59

7.2.9 Lane Connectivity Table

Table 33 specifies the format for the lane connectivity table. To validate a lane connectivity table,
it is necessary to verify the following:

Thefield names and types are correct.

The data values arein the legal ranges.

The node, link, and lane references are correct.

Each lane has at least one incoming and at least one outgoing connection.

Table33: Lane Connectivity table format.

Column Name Description Allowed Values
NODE ID number of the node. integer: 1 through 2,147,483,647
INLINK ID number of the incoming link. integer: 1 through 2,147,483,647
INLANE L ane number of the incoming lane. integer: 1 through 255
OUTLINK ID number of the outgoing link. integer: 1 through 2,147,483,647
OUTLANE Lane number of the outgoing lane. integer: 1 through 255
NOTES Character string used for data quality annotations; | 255 characters

free format (may be blank).

TRANSIMS-LANL-1.0 — Files— May 1999 Page 60
LA-UR —99-2579

7.2.10 Turn Prohibition Table

Entriesin the Turn Prohibition Table are required when particular movements at a node are
prohibited only at certain times of the day. The Lane Connectivity Table specifies the allowed and

prohibited movements that are always in effect at a node.

m= A Turn Prohibition Tableis not required in |OC-2 because time-of-day restrictions are not

currently supported.

Table 34 specifies the format for the turn prohibition table. To validate a turn prohibition table, it
is necessary to verify the following:
Thefield names and types are correct.

The data values

arein the legal ranges.

The node and link references are correct.

Table34: Turn prohibition table for mat.

Column Name
NODE

Description
ID number of the node.

Allowed Values
integer: 1 through 2,147,483,647

INLINK

ID number of the incoming link.

integer: 1 through 2,147,483,647

OUTLINK

ID number of the outgoing link.

integer: 1 through 2,147,483,647

STARTTIME

Starting time for the prohibition.

a character string with the day of week,
‘SUN’ = Sunday

‘MON’ = Monday

‘TUE’ = Tuesday

‘WED’ = Wednesday

‘THU’ = Thursday

‘FRI' = Friday

‘SAT’ = Saturday

‘WKE' = any weekend day

‘WKD’ = any weekday

‘ALL’ = any day,

followed by the time of day (on a 24-hour
clock), for example ‘WKD13:20' is any
weekday at 1:20 in the afternoon

ENDTIME

Ending time for the prohibition.

specified like STARTTIME

NOTES

Character string used for data quality
annotations; free format (may be
blank).

255 characters

TRANSIMS-LANL-1.0 — Files— May 1999

LA-UR —99-2579

Page 61

7.2.11 Unsignalized Node Table

Table 35 specifies the format for the unsignalized node table. To validate an unsignalized node

table, it is necessary to verify the following:
Thefield names and types are correct.
The data values arein the legal ranges.
The node and link references are correct.

Each incoming link entering an unsignalized node has a record.

Table 35: Unsignalized node table format.

Column Name Description Allowed Values

NODE ID number of the node. integer: 1 through

2,147,483,647
INLINK ID number of the incoming link. integer: 1 through

2,147,483,647
SIGN Type of sign control on the link. one character:

‘S =stop

‘Y’ =yidd

‘N’ = none
NOTES Character string used for data quality annotations; | 255 characters

free format (may be blank).

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 62

7.2.12 Signalized Node Table

Table 36 specifies the format for the signalized node table. To validate a signalized node table, it
is necessary to verify the following:

Thefield names and types are correct.

The data values arein the legal ranges.

The node references are correct.

The plan references are correct.

Each node has ether one signalized or one unsignalized contral.

All plans are used.

The start times are valid.

Table36: Signalized node table format.

Column Name Description Allowed Values

NODE ID number of the node. integer: 1 through 2,147,483,647
TYPE Type of the signal. one character:
‘T = timed
‘A’ = actuated
PLAN ID number of atiming plan. integer: 1 through 65,535
OFFSET Relative offset (in seconds) for coordinated | non-negative floating-point number
signals.
STARTTIME Starting time for the plan. a character string with the day of week
‘SUN’ = Sunday
‘MON’ = Monday
‘TUE’ = Tuesday

‘WED’ = Wednesday

‘THU'’ = Thursday

‘FRI' = Friday

‘SAT’ = Saturday

‘WKE' = any weekend day

‘WKD’ = any weekday

‘ALL’ = any day,

followed by the time of day (on a 24-
hour clock), for example ‘WK D13:20’
is any weekday at 1:20 in the

afternoon
COORDINATR | ID number of coordinator for the signal; integer: 1 through 2,147,483,647
equivalent to NODE number if signal is
isolated.
RING Single or dual ring, required only for one character:
TYPE="A". ‘S =single
‘D’ = dua
ENTRY Single or dual entry, required only for one character:
RING='D’. ‘S =single
‘D’ = dua
NOTES Character string used for data quality 255 characters
annotations; free format (may be blank).
TRANSIMS-LANL-1.0 — Files— May 1999 Page 63

LA-UR —99-2579

7.2.13 Phasing Plan Table

Table 37 specifies the format for the phasing plan table. To validate a phasing plan table, it is
necessary to verify the following:

Thefield names and types are correct.

The data values arein the legal ranges.

The plan, phase, node, and link references are correct.
Each incoming and outgoing link is controlled.

Table37: Phasing plan table format.

Column Name Description Allowed Values

NODE ID number of the node . integer: 1 through 2,147,483,647
PLAN ID number of the timing plan. integer: 1 through 65,535
PHASE Phase number. integer: 1 through 255
INLINK ID number of the incoming link. integer: 1 through 2,147,483,647
OUTLINK ID number of the outgoing link. integer: 1 through 2,147,483,647
PROTECTION |Movement protection indicator. one character:

‘P = protected

‘U’ = unprotected

'S = unprotected after stop
NOTES Character string used for data quality annotations; [255 characters

free format (may be blank).

TRANSIMS-LANL-1.0 — Files— May 1999 Page 64
LA-UR —99-2579

7.2.14 Timing Plan Table

Table 38 specifies the format for the timing plan table. To validate atiming plan table, it is

necessary to verify the following:
Thefield names and types are correct.
The data values arein the legal ranges.
The (plan, phase) pairs are unique.
The time values are consistent.
The phase sequence references existent phases.

Table38: Timing plan table format.

Column Name Description Allowed Values

PLAN ID number of atiming plan. integer: 1 through 65,535

PHASE Phase number. integer: 1 through 255

NEXTPHASES |Phase number(s) of the next phase(s) in string of phase numbers, separated by
seguence. slashes

GREENMIN Minimum length (in seconds) of the green non-negative floating-point number
interval, or fixed green length for timed signal.

GREENMAX Maximum length (in seconds) of the green non-negative floating-point number
interval.

GREENEXT L ength (in seconds) of the green extension non-negative floating-point number
interval.

YELLOW L ength (in seconds) of the yellow interval. non-negative floating-point number

REDCLEAR L ength (in seconds) of the red clearance non-negative floating-point number
interval.

GROUPFIRST [For pre-timed or singlering: 1 if first phase, O (integer: O through 255
if not first phase; for dual ring: number of
phase group for which this phaseis first phase,
0 if not first phase in the phase group.

NOTES Character string used for data quality 255 characters
annotations; free format (may be blank).

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 65

7.2.15 Detector Table

m Detectors are not supported in [OC-2.

Table 39 specifies the format for the detector table. To validate a detector table, it is hecessary to
verify the following:

Thefield names and types are correct.

The data values arein the legal ranges.

ThelDs are unique.

The node, link, and lane references are correct.

The offset and length are consistent with the setbacks and length of the link.

Table39: Detector table format.

Column Name Description Allowed Values

ID ID number of the detector. integer: 1 through 2,147,483,647

NODE ID number of the node toward which vehiclesjinteger: 1 through 2,147,483,647
are traveling.

LINK ID number of the link on which the detector |integer: 1 through 2,147,483,647
lies.

OFFSET Starting position of the detector, measured (innon-negative floating-point number

meters) from NODE.
LANEBEGIN L ane number of lane at which the detector |integer: 1 through 255
begins.
LANEEND L ane number of lane at which the detector |integer: 1 through 255
ends, equal to LANEBEGIN for detector that
lies on single lane.

LENGTH L ength of the detector (in meters). non-negative floating-point number
STYLE Type of the detector. ten characters:
‘PRESENCE’ = sense vehicleson
detector
‘PASSAGE’ = sense vehicles crossing
detector
COORDINATR ID number of coordinators interested in string of coordinator 1Ds separated by
detector output. slashes
NOTES Character string used for data quality 255 characters

annotations; free format (may be blank).

TRANSIMS-LANL-1.0 — Files— May 1999 Page 66
LA-UR —99-2579

7.2.16 Signal Coordinator Table

m Signal Coordinators are not supported in |OC-2.

Table 40 specifies the format for the signal coordinator table. To validate a signal coordinator

table, it is necessary to verify the following:
Thefield names and types are correct.
The data values arein the legal ranges.
ThelDs are unique.

Table40: Signal coordinator table format.

Column Name Description Allowed Values

ID ID number of the signal coordinator. integer: 1 through 2,147,483,647
TYPE Type of coordinator. ten characters: values to be determined
ALGORITHM |Control algorithm used by coordinator. ten characters: values to be determined
NOTES Character string used for data quality 255 characters

annotations; free format (may be blank).

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 67

7.2.17 Activity Locations

Table 41 specifies the format for the activity location table. To validate an activity location table,
it is necessary to verify the following.
Thefield names and types are correct.
The data values arein the legal ranges.
ThelDs are unique.
The node and link references are correct.
The offset is consistent with the setbacks and lengths of the links.
Thelayer is consistent with the vehicle types allowed on the link.
The names of any optional user-defined fields are unique within the table.

Table4l: Activity locations.

Column Name

Description

Allowed Values

ID ID number of the activity location. integer: 1 through
2,147,483,647
NODE ID number of the node toward which vehicles | integer: 1 through
aretraveling (the location is taken to be on the | 2,147,483,647
right side of the street when headed this
direction).
LINK ID number of the link on which the activity integer: 1 through
location lies. 2,147,483,647
OFFSET Location of the entrance fromthelink tothe | non-negative floating-point
activity location, measured (in meters) from number
NODE.
LAYER Themodal “layer” on which the activity string of characters: “ AUTO” or
location resides. “BUS’ or “LIGHTRAIL” or
“ WALK”
EASTING The x-coordinate of the node (in meters, UTM | floating-point number
coordinate system).
NORTHING | They-coordinate of the node (in meters, UTM | floating-point number
coordinate system).
ELEVATION | The z-coordinate of the node (in meters, UTM | floating-point number

coordinate system).

optional field 1

First optional fied related to land use.

floating-point number

optional field 2

Second optional field related to land use.

floating-point number

optional fied n

Then-th optional fidd rdated to land use.

floating point number

NOTES

Character string used for data quality
annotations; free format (may be blank).

255 characters

A maximum of 20 user-defined fields may optionally beincluded in the table between the
ELEVATION and NOTES fields. These optional fields are typically related to land use, but could
be anything the user wishes to specify about an activity location. The column names may be up to
32 charactersin length. The presence of any optional fields is detected by the

Net ReadAct i vi t yLocat i onHeader () function. Thisimpliesthat the header for the activity

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 68

location table must be read by this function rather than by Net ReadHeader () or
Net Ski pHeader () , whether or not optional fields are included.

7.2.18 Process Links

Table 42 specifies the format for a processlink table. To validate a process link table, it is
necessary to verify the following:

Thefield names and types are correct.

The data values arein the legal ranges.

ThelDs are unique.

The*from” and “to” accessory references are correct.

Table42: Processlinks.

Column Name
ID

Description
ID number of thevirtual link.

Allowed Values

integer: 1 through

2,147,483,647
FROMID ID number of the accessory fromwhichthe |integer: 1 through
virtual link leaves. 2,147,483,647
FROMTYPE | Typeof accessory from which the virtual link | string of characters:
leaves. “ACTIVITY” or “ PARKING”
or “ TRANSIT”
TOID ID number of the accessory to which the integer: 1 through
virtual link leads. 2,147,483,647
TOTYPE Type of accessory to which the virtual link string of characters:
leads. “ACTIVITY” or “ PARKING”
or “ TRANSIT”
DELAY Thetime delay (measured in seconds) incurred | non-negative floating-point
when traveling across the virtua link. number
COST The cost (measured in arbitrary units) non-negative floating-point
incurred when traveling across the virtual number
link.
NOTES Character string used for data quality 255 characters

annotations; free format (may be blank).

Note that although the costs are measured in arbitrary units, the units must be the same for the

whole data table.

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 69

7.2.19 Study Area Link Table

Table 43 specifies the format for the study area link table. To validate a study arealink table, it is
necessary to verify the following:

Thefield names and types are correct.

The data values arein the legal ranges.

The link references are correct.

Table43: Study arealink tableformat.

Column Name Description Allowed Values

ID ID number of the link. integer: 1 through 2,147,483,647
BUFFER \Whether the link is in the buffer area or the study |one character:
area. ‘Y’ =inbuffer area
‘N’ = in study area
NOTES Character string used for data quality annotations; (255 characters
free format (may be blank).

7.3 Interface Functions

The network subsystem has C structures and utility functions for reading and writing network data
files.

7.3.1 NetReadHeader
Sgnature: i nt Net ReadHeader (FILE * file, TNetHeader * header)

Description: Read a header from a network table.

Argument: fil e —FI LE pointer for the network data table.
header — pointer to TNet Header structure into which the header is read.

Return Value: Return nonzero if the header was successfully read, or zero if not.

7.3.2 NetWriteHeader

Sgnature: int NetWiteHeader (FILE * file, const TNet Header *
header)

Description: Write a header from a network table.
Argument: fil e —FI LE pointer for the network data table.
header — pointer to TNet Header structure from which the header is

written.

Return Value: Return nonzero if the header was successfully written, or zero if not.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 70
LA-UR —99-2579

7.3.3 NetSkipHeader
Sgnature. int Net Ski pHeader (FILE * file)

Description: Skip a header from a network table.
Argument: fil e —FI LE pointer for the network data table.

Return Value: Return nonzero if the header was successfully skipped, or zero if not.

7.3.4 NetReadActivityLocationHeader

Sgnature: i nt Net ReadActi vityLocationHeader (FILE* file, TNetHeader*
header, TNet ActivitylLocati onRecord* record)

Description: Read a header from an activity location table.
Argument: fil e —FI LE pointer for the network data table.
header — pointer to TNet Header structure into which the header is read.

record — pointer to TNet Act i vi t yLocat i onRecor d structurewhichis
initialized based on the header contents.

Return Value: Return nonzero if the header was successfully read, or zero if not.

7.3.5 NetReadNode
Sgnature: i nt Net ReadNode(FILE * file, TNetNodeRecord * record)

Description: Read arecord from a node table.
Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet NodeRecor d structure into which therecord is

read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.6 NetWriteNode

Sgnature: int NetWiteNode(FILE * file, const TNet NodeRecord *
record)

Description: Writearecord to a node table.
Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet NodeRecor d structure from which the record is

written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 71
LA-UR —99-2579

7.3.7 NetReadLink
Sgnature: int Net ReadLi nk(FILE * file, TNetLinkRecord * record)

Description: Read arecord from alink table.

Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet Li nkRecor d structure into which therecord is
read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.8 NetWriteLink

Sgnature: int NetWiteLink(FILE * file, const TNetLinkRecord *
record)

Description: Writearecord to alink table.
Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet Li nkRecor d structure from which therecord is

written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

7.3.9 NetReadSpeed
Sgnature: int Net ReadSpeed(FILE * file, TNetSpeedRecord * record)

Description: Read arecord from a speed table.
Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet SpeedRecor d structure into which therecord is

read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.10 NetWriteSpeed

Sgnature: int NetWiteSpeed(FILE * file, const TNet SpeedRecord *
record)

Description: Writearecord to a speed table.
Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet SpeedRecor d structure from which therecord is

written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 72
LA-UR —99-2579

7.3.11 NetReadPocket
Sgnature: i nt Net ReadPocket (FILE * file, TNetPocketRecord * record)

Description: Read arecord from a pocket lane table.

Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet Pocket Recor d structureinto which therecord is
read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.12 NetWritePocket

Sgnature: int NetWitePocket (FILE * file, const TNet PocketRecord *
record)

Description: Writearecord to a pocket lanetable.

Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet Pocket Recor d structure from which therecord is
written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

7.3.13 NetReadLaneUse

Sgnature: i nt Net ReadLaneUse(FILE * file, TNetLaneUseRecord *
record)

Description: Read arecord from alane use table.
Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet LaneUseRecor d structureinto which therecord is

read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.14 NetWriteLaneUse

Sgnature: int NetWitelLaneUse(FILE * file, const TNetLaneUseRecord
* record)

Description: Writearecord to a lane use table.
Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet LaneUseRecor d structure from which the record

IS written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 73
LA-UR —99-2579

7.3.15 NetReadParking

Sgnature: i nt Net ReadPar ki ng(FILE * file, TNetParkingRecord *
record)

Description: Read arecord from a parking table.

Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet Par ki ngRecor d structure into which the record
isread.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.16 NetWriteParking

Sgnature: int NetWiteParking(FILE * file, const TNet Parki ngRecord
* record)

Description: Writearecord to a parking table.
Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet Par ki ngRecor d structure from which the record
is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

7.3.17 NetReadBarrier

Sgnature: int NetReadBarrier(FILE * file, TNetBarrierRecord *
record)

Description: Read arecord from a barrier table.
Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet Bar ri er Recor d structureinto which the record
isread.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.18 NetWriteBarrier

Sgnature: int NetWiteBarrier(FILE * file, const TNetBarrierRecord
* record)

Description: Writearecord to a barrier table.
Argument: fil e —FI LE pointer for the network data table.
record — pointer to TNet Bar ri er Recor d structure from which the record

IS written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 74
LA-UR —99-2579

7.3.19 NetReadTransitStop

Sgnature. int Net ReadTransitStop(FILE * file,
TNet Tr ansi t St opRecor d* record)

Description: Read arecord from a transit stop table.
Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet Tr ansi t St opRecor d structure into which the
record is read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.20 NetWriteTransitStop

Sgnature: int NetWiteTransitStop(FILE * file, const
TNet Transi t St opRecord * record)

Description: Writearecord to a transit stop table.
Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet Tr ansi t St opRecor d structure from which the
record is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

7.3.21 NetReadLaneConnectivity

Sgnature. int Net ReadLaneConnectivity(FILE * file,
TNet LaneConnecti vi tyRecord * record)

Description: Read arecord from a lane connectivity table.
Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet LaneConnect i vi t yRecor d structure into which
therecord is read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.22 NetWriteLaneConnectivity

Sgnature: int NetWitelLaneConnectivity(FILE * file, const
TNet LaneConnecti vityRecord * record)

Description: Write arecord to a lane connectivity table.
Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet LaneConnect i vi t yRecor d structure from

which the record is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 75
LA-UR —99-2579

7.3.23 NetReadTurnProhibition

Sgnature. int Net ReadTurnProhibition(FILE * file,
TNet Tur nPr ohi bi ti onRecord * record)

Description: Read arecord from a turn prohibition table.

Argument: fil e —FI LE pointer for the network data table
recor d — pointer to TNet Tur nPr ohi bi ti onRecor d structureinto which
therecord is read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.24 NetWriteTurnProhibition

Sgnature: int NetWiteTurnProhibition(FILE * file, const
TNet Tur nPr ohi bi ti onRecord * record)

Description: Writearecord to a turn prohibition table.
Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet Tur nPr ohi bi ti onRecor d structure from which

therecord is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

7.3.25 NetReadUnsignalizedNode

Sgnature. int Net ReadUnsi gnal i zedNode(FI LE * file,
TNet Unsi gnal i zedNodeRecord * record)

Description: Read arecord from an unsignalized node table.
Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet Unsi gnal i zedNodeRecor d structure into which
therecord is read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.26 NetWriteUnsignalizedNode

Sgnature int NetWiteSignalizedNode(FILE * file, const
TNet Unsi gnal i zedNodeRecord * record)

Description: Writearecord to an unsignalized node table.
Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet Unsi gnal i zedNodeRecor d structure from

which the record is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 76
LA-UR —99-2579

7.3.27 NetReadSignalizedNode

Sgnature. int Net ReadSi gnal i zedNode(FI LE * file,
TNet Si gnal i zedNodeRecord * record)

Description: Read arecord from a signalized node table.

Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet Si gnal i zedNodeRecor d structureinto which
therecord is read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.28 NetWriteSignalizedNode

Sgnature int NetWiteSignalizedNode(FILE * file, const
TNet Si gnal i zedNodeRecord * record)

Description: Write arecord to a signalized node table.

Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet Si gnal i zedNodeRecor d structure from which
therecord is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

7.3.29 NetReadPhasingPlan

Sgnature: i nt Net ReadPhasi ngPl an(FILE * file, TNetPhasi ngPl anRecord
* record)

Description: Read arecord from a phasing plan table.
Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet Phasi ngPl anRecor d structure into which the

record is read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.30 NetWritePhasingPlan

Sgnature: int NetWitePhasingPlan(FILE * file, const
TNet Phasi ngPl anRecord * record)

Description: Write arecord to a phasing plan table.
Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet Phasi ngPl anRecor d structure from which the

record is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 77
LA-UR —99-2579

7.3.31 NetReadTimingPlan

Sgnature: int NetReadTimngPlan(FILE * file, TNetTi m ngPl anRecord *
record)

Description: Read arecord from atiming plan table.

Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet Ti mi ngPl anRecor d structure into which the
record is read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.32 NetWriteTimingPlan

Sgnature int NetWiteTimngPlan(FILE * file, const
TNet Ti mi ngPl anRecord * record)

Description: Writearecord to atiming plan table.

Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet Ti mi ngPl anRecor d structure from which the
record is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

7.3.33 NetReadDetector

Sgnature: int Net ReadDetector (FILE * file, TNetDetectorRecord *
record)

Description: Read arecord from a detector table.
Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet Det ect or Recor d structure into which the record

isread.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.34 NetWriteDetector

Sgnature int NetWiteDetector (FILE * file, const
TNet Det ect or Record * record)

Description: Write arecord to a detector table.
Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet Det ect or Recor d structure from which the

record is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 78
LA-UR —99-2579

7.3.35 NetReadSignalCoordinator

Sgnature. int Net ReadSi gnal Coordi nator (FILE * file,
TNet Si gnal Coor di nat or Record * record)

Description: Read arecord from a signal coordinator table.

Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet Si gnal Coor di nat or Recor d structure into
which therecord is read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.36 NetWriteSignalCoordinator

Sgnature: int NetWiteSignal Coordinator (FILE * file, const
TNet Si gnal Coor di nat or Record * record)

Description: Writearecord to a signal coordinator table.
Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet Si gnal Coor di nat or Recor d structure from

which the record is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

7.3.37 NetReadActivityLocation

Sgnature. int Net ReadActivityLocation(FILE * file,
TNet Acti vitylLocati onRecord * record)

Description: Read arecord from an activity location table.
Argument: fil e —FI LE pointer for the network data table.
record — pointer to TNet Act i vi t yLocat i onRecor d structure into which

therecord isread.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.38 NetWriteActivityLocation

Sgnature: int NetWiteActivityLocation(FILE * file, const
TNet Acti vitylLocati onRecord * record)

Description: Writearecord to a process link table.
Argument: fil e —FI LE pointer for the network data table.
record — pointer to TNet Act i vi t yLocat i onRecor d structure from

which the record is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 79
LA-UR —99-2579

7.3.39 NetReadProcessLink

Sgnature: i nt Net ReadProcessLink(FILE * file, TNetProcessLi nkRecord
* record)

Description: Read arecord from a process link table.

Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet Pr ocessLi nkRecor d structure into which the
record is read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.40 NetWriteProcessLink

Sgnature: int NetWiteProcessLink(FILE * file, const
TNet ProcessLi nkRecord * record)

Description: Writearecord to a process link table.

Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet Pr ocessLi nkRecor d structure from which the
record is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

7.3.41 NetReadStudyAreaLink

Sgnature. int Net ReadSt udyAreaLi nk(FILE * file,
TNet St udyAr eali nkRecord * record)

Description: Read arecord from a study area link table.
Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet St udyAr eaLi nkRecor d structure into which the
record is read.

Return Value: Return nonzero if the record was successfully read, or zero if not.

7.3.42 NetWriteStudyArealink

Sgnature. int NetWiteStudyArealLink(FILE * file, const
TNet St udyAr eali nkRecord * record)

Description: Writearecord to a study arealink table.
Argument: fil e —FI LE pointer for the network data table.
recor d — pointer to TNet St udyAr eaLi nkRecor d structure from which the

record is written.

Return Value: Return nonzero if the record was successfully written, or zero if not.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 80
LA-UR —99-2579

7.4 Data Structures

7.4.1 TNetHeader

This structureis used for the network table header.
t ypedef struct

/** The field names. **/
I NT8 fFields[512];

} TNet Header ;

7.4.2 TNetNodeRecord

This structureis used for network node table records.

t ypedef struct

{
[** The 1D field. **/
INT32 f1d;

[** The EASTING field. **/
REAL64 f Easti ng;

[** The NORTH NG field. **/
REAL64 f Nort hi ng;

/** The ELEVATION field. **/
REAL64 f El evati on;

/** The NOTES field. **/
I NT8 f Not es[256] ;

} TNet NodeRecor d

7.4.3 TNetLinkRecord

This structure isused for network link table records.

t ypedef struct

{
/** The ID field. **/
INT32 fld;

/** The NAME field. **/
I NT8 f Nane[51] ;

/** The NODEA field. **/
I NT32 f Nodea;

/** The NCDEB field. **/
I NT32 f Nodeb;

[** The PERMLANESA field. **/

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 81

I NT32 f Perml anesa;

/** The PERMLANESB field. **/
I NT32 f Per ml anesb;

/** The LEFTPCKTSA field. **/
I NT32 f Left pcktsa;

[** The LEFTPCKTSB field. **/
I NT32 f Left pckt sb;

/** The Rl GHTPCKTSA field. **/
I NT32 f Ri ght pckt sa;

/** The Rl GHTPCKTSB field. **/
I NT32 f Ri ght pckt sb;

[** The TWOMYTURN field. **/
I NT8 f Twowayt urn[2];

[** The LENGIH field. **/
REAL64 fLengt h;

/[** The GRADE field. **/
REAL64 f G ade;

/** The SETBACKA field. **/
REAL64 f Set backa;

/** The SETBACKB field. **/
REAL64 f Set backb;

/** The CAPACI TYA field. **/
I NT32 f Capacitya;

/** The CAPACITYB field. **/
I NT32 f Capacityb;

/** The SPEEDLMTA field. **/
REAL64 f Speedl nt a;

/** The SPEEDLMIB field. **/
REAL64 f Speedl nt b;

/** The FREESPDA field. **/
REAL64 f Fr eespda;

[** The FREESPDB field. **/
REAL64 f Freespdb;

/** The FUNCTCLASS field. **/
I NT8 f Functcl ass[11];

/** The THRUA field. **/
I NT32 f Thrua;

/** The THRUB field. **/
I NT32 f Thr ub;

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 82

/** The COLOR field. **/
I NT32 f Col or;

/** The VEH CLE field. **/
I NT8 fVehicle[101];

/** the NOTES field. **/
I NT8 f Not es[256] ;

} TNet NodeRecor d;

7.4.4 TNetSpeedRecord

This structure is used for network speed table records.

t ypedef struct

{
/[** The LINK field. **/
I NT32 fLink;

/** The NCDE field. **/
I NT32 f Node;

[** The SPEEDLMI field. **/
REAL64 f Speedl nt;

[** The FREESPD field. **/
REAL64 f Freespd,;

/** The VEH CLE field. **/
I NT8 fVehicle[101];

/** The STARTTIME field. **/
INT8 fStarttine[9];

/** The ENDTIME field. **/
I NT8 fEndtinme[9];

/** The NOTES field. **/
I NT8 f Not es[256]

} TNet SpeedRecor d;

7.45 TNetPocketRecord

This structure is used for network pocket lane table records.

t ypedef struct

{
/** The ID field. **/
INT32 f1d;

/** The NCDE field. **/
I NT32 f Node;

/[** The LINK field. **/
I NT32 fLink;

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 83

/[** The OFFSET field. **/
REALG64 f O f set;

/** The LANE field. **/
| NT32 f Lane;

[** The STYLE field. **/
INT8 fStyle[2];

[** The LENGIH field. **/
REAL64 fLengt h;

/** The NOTES field. **/
I NT8 f Not es[256] ;

} TNet Pocket Recor d;

7.4.6 TNetLaneUseRecord

This structureis used for network lane use table records.
t ypedef struct

{
/** The NCDE field. **/
I NT32 f Node;

/[** The LINK field. **/
I NT32 fLink;

/** The LANE field. **/
| NT32 f Lane;

/** The VEH CLE field. **/
I NT8 fVehicle[101];

/** The RESTRICT field. **/
INT8 fRestrict[2];

/** The STARTTIME field. **/
INT8 fStarttine[9];

/** The ENDTIME field. **/
I NT8 fEndtinme[9];

/** The NOTES field. **/
I NT8 f Not es[256] ;

} TNet LaneUseRecord

7.4.7 TNetParkingRecord

This structureis used for network parking table records.
t ypedef struct

{
/** The ID field. **/

TRANSIMS-LANL-1.0 — Files— May 1999 Page 84
LA-UR —99-2579

I NT32 fld,;

/** The NCDE field. **/
I NT32 f Node;

/[** The LINK field. **/
I NT32 fLink;

[** The OFFSET field. **/
REALG64 f O f set;

[** The STYLE field. **/
INT8 fStyl e[6];

[** The CAPACITY field. **/
I NT32 f Capacity;

/[** The GENERIC field. **/
I NT8 f CGeneric[2];

/** The VEH CLE field. **/
I NT8 fVehicle[101];

/** The STARTTIME field. **/
INT8 fStarttine[9];

/** The ENDTIME field. **/
I NT8 fEndtinme[9];

/** The NOTES field. **/
I NT8 f Not es[256] ;

} TNet Par ki ngRecor d;

7.4.8 TNetBarrierRecord

This structureis used for network barrier table records.

t ypedef struct

{
/** The ID field. **/
INT32 f1d;

/** The NCDE field. **/
I NT32 f Node;

[** The LINK field. **/
I NT32 fLink;

[** The OFFSET field. **/
REALG64 f O f set;

/** The LANE field. **/
| NT32 f Lane;

/** The STYLE field. **/
INT8 fStyl e[11];

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 85

[** The LENGIH field. **/
REAL64 fLengt h;

/** The NOTES field. **/
I NT8 f Not es[256] ;

} TNetBarri er Record;

7.4.9 TNetTransitStopRecord

This structureis used for network transit stop table records.
t ypedef struct

{
/** The ID field. **/
INT32 fld;

/** The NAME field. **/
I NT8 f Nane[51] ;

/** The NCDE field. **/
I NT32 f Node;

/[** The LINK field. **/
I NT32 fLink;

[** The OFFSET field. **/
REALG64 f O f set;

/** The VEH CLE field. **/
I NT8 fVehicle[101];

/** The STYLE field. **/
INT8 fStyle[11];

[** The CAPACITY field. **/
I NT32 f Capacity;

/** The NOTES field. **/
I NT8 f Not es[256] ;

} TNet Transi t St opRecor d;

7.4.10 TNetLaneConnectivityRecord

This structure is used for network lane connectivity table records.

t ypedef struct

{
/** The NCDE field. **/
I NT32 f Node;

/** The INLINK field. **/
I NT32 flnlink;

/** The | NLANE field. **/
I NT32 flnl ane;

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 86

[** The QUTLINK field. **/
INT32 fQutlink;

/** The QUTLANE field. **/
I NT32 fQutl ane;

/** The NOTES field. **/
I NT8 f Not es[256] ;

} TNet LaneConnecti vi t yRecord;

7.4.11 TNetTurnProhibitionRecord

This structure is used for network turn prohibition table records.
t ypedef struct

{
/** The NCDE field. **/
I NT32 f Node;

/** The INLINK field. **/
I NT32 flnlink;

[** The QUTLINK field. **/
INT32 fQutlink;

/** The STARTTIME field. **/
INT8 fStarttine[9];

/** The ENDTIME field. **/
I NT8 fEndtinme[9];

/** The NOTES field. **/
I NT8 f Not es[256] ;

} TNet Tur nPr ohi bi ti onRecor d;

7.4.12 TNetUnsignalizedNodeRecord

This structure is used for network unsignalized node table records.

t ypedef struct

{
/** The NCDE field. **/
I NT32 f Node;

[** The INLINK field. **/
I NT32 flnlink;

/[** The SIGN field. **/
I NT8 fSign[2];

[** The NOTES field. **/
| NT8 f Not es;

} TNet Unsi gnal i zedNodeRecor d;

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 87

7.4.13 TNetSignalizedNodeRecord

This structure is used for network signalized node table records.

t ypedef struct

{
/** The NCDE field. **/
I NT32 f Node;

[** The TYPE field. **/
I NT8 f Type[2];

/** The PLAN field. **/
I NT32 f Pl an;

[** The OFFSET field. **/
REALG64 f O f set;

/** The STARTTIME field. **/
INT8 fStarttine[9];

/** The COORDI NATR field. **/
I NT32 f Coordinatr;

/** The RING field. **/
INT8 fRing[2];

/** The ENTRY field. **/
INT8 fEntry[2];

/** The NOTES field. **/
I NT8 f Not es[256] ;

} TNet Si gnal i zedNodeRecor d;

7.4.14 TNetPhasingPlanRecord

This structure is used for network phasing plan table records.

t ypedef struct

{
/** The NCDE field. **/
I NT32 f Node;

/** The PLAN field. **/
I NT32 f Pl an;

[** The PHASE field. **/
| NT32 f Phase;

/** The INLINK field. **/
I NT32 flnlink;

[** The QUTLINK field. **/
INT32 fQutlink;

/** The PROTECTION field. **/
INT8 fProtection[2];

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 88

/** The NOTES field. **/
I NT8 f Not es[256] ;

} TNet Phasi ngPl anRecor d;

7.4.15 TNetTimingPlanRecord

This structure is used for network timing plan table records.

t ypedef struct

{
/** The PLAN field. **/
I NT32 f Pl an;

[** The PHASE field. **/
| NT32 f Phase;

[** The NEXTPHASES field. **/
I NT8 f Next phases[21];

/** The GREENM N field. **/
REAL64 f Greenm n;

/** The GREENMAX field. **/
REAL64 f G eennax;

[** The GREENEXT field. **/
REAL64 f G eenext ;

[** The YELLOWfield. **/
REAL64 f Yel | ow;

/** The REDCLEAR field. **/
REAL64 f Redcl ear;

[** The GROUPFIRST field. **/
I NT32 f Groupfirst;

/** The NOTES field. **/
I NT8 f Not es[256] ;

} TNet Ti m ngPl anRecor d;

7.4.16 TNetDetectorRecord

This structureis used for network detector table records.

t ypedef struct

{
/** The ID field. **/
INT32 f1d;

/** The NCDE field. **/
I NT32 f Node;

/[** The LINK field. **/

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 89

I NT32 fLink;

[** The OFFSET field. **/
REALG64 f O f set;

/** The LANEBEGA N field. **/
I NT32 fLanebegi n;

/** The LANEEND field. **/
| NT32 f Laneend;

[** The LENGIH field. **/
REAL64 fLengt h;

/** The STYLE field. **/
INT8 fStyl e[11];

/** The COORDI NATR field. **/
I NT8 f Coordinatr[51];

/** The NOTES field. **/
I NT8 f Not es[256] ;

} TNet Det ect or Recor d;

7.4.17 TNetSignalCoordinatorRecord

This structure is used for network signal coordinator table records.

t ypedef struct

{
/** The ID field. **/
INT32 fld;

/** The TYPE field. **/
I NT8 f Type[11];

[** The ALGORI THM field. **/
INT8 fAl gorithni11];

/** The NOTES field. **/
| NT8 f Not es;

} TNet Si gnal Coor di nat or Recor d;

7.4.18 TNetActivityLocationRecord

This structureis used for activity location table records.

/** Maxi mum al | oned optional user-defined fields in activity |ocation data.

**/

#defi ne ACTI VI TY_MAX_USER 20
t ypedef struct

{
/** The ID field. **/
INT32 fld;

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 90

/** The NCDE field. **/
I NT32 f Node;

/[** The LINK field. **/
I NT32 fLink;

[** The OFFSET field. **/
REALG64 f O f set;

[** The LAYER field. **/
I NT8 fLayer[11];

/** The EASTING field. **/
REAL64 f Easti ng;

/** The NORTHI NG field. **/
REAL64 f Nort hi ng;

/** The ELEVATION field. **/
REAL64 fEl evati on;

/** The nunber of values in the fUserNane and fUser Data arrays.
I NT32 f Nunber User ;

/** Optional array of user-defined real values. The nunber of val ues

/* in the array is variable, but nust be the same in each record.

/* The data will typically be related to | and use.
/* The optional fields inmredi ately precede the NOTES field. **/
REAL64 f User Dat a[ACTI VI TY_MAX_USER] ;

/** The nanes of the fields in fUser Data. **/
I NT8 f User Names[ACTI VI TY_MAX_USER] [32];

/** The NOTES field. **/
I NT8 f Not es[256] ;

} TNet ActivitylLocati onRecord;

7.4.19 TNetProcessLinkRecord

This structureis used for process link table records.
t ypedef struct

{
/** The ID field. **/
INT32 fld;

/** The FROM D field. **/
I NT32 fFrom d;

/** The FROMIYPE field. **/
I NT8 f Frontype[11];

[** The TAD field. **/
I NT32 fToid;

[** The TOTYPE field. **/

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 91

INT8 fTotype[11];

/** The DELAY field. **/
REAL64 f Del ay;

/[** The COST field. **/
REAL64 f Cost ;

/** The NOTES field. **/
I NT8 f Not es[256] ;

} TNet ProcessLi nkRecor d;

7.4.20 TNetStudyArealLinkRecord

This structure is used for network study area link table records.
t ypedef struct

{
/** The ID field. **/
INT32 f1d;

/** The BUFFER field. **/
INT8 fBuffer[2];

[** The NOTES field. **/
| NT8 f Not es;

} TNet St udyAr eali nkRecor d;

7.5 Utility Programs
Several utility programs related to network data files are available.

7.5.1 ReadNetwork

The ReadNetwor k application reads a specified set of network tables into memory and constructs
C++ network objects out of it. It isuseful for verifying that a network can be read by the route
planner and microsimulation without actually running those programs. It takes a configuration file
asits only argument.

7.5.2 ValidateNetwork

The ValidateNetwork application reads a specified set of network tables into memory and looks for
errors, inconsistencies, and suspicious data in them. It is useful for checking the validity of
network data files before using themin a simulation. It takes a configuration file and alog
(output) file asits two arguments. The configuration file key NET_VALIDATE_WARNINGS
should be set to zero or one, depending upon whether the tool should list warnings in addition to
erors.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 92
LA-UR —99-2579

7.5.3 SetupNetwork

The SetupNetwork script copies a set of empty and test network tables into a specified directory. It
is useful for building a new network database directory. It takes the name of the directory asits

only argument.

7.5.4 CleanupNetwork

The CleanupNetwork script removes a set of tables created by SetupNetwork. 1t takes the name of

the directory as its argument.

7.6 Files

Table44: Network library files.

Type File Name Description
Binary Files libTIO.a TRANSIMS Interfaces library
Utilities ReadNetwork Network data file reader

ValidateNetwork | Network data file validator

SetupNetwork Tool for creating empty and test network data files
CleanupNetwork | Tool for removing empty and test network data files
Source Files netio.c Defines network data structures and interface functions

netio.h Network interface functions source file

Example Files | Test*.thl

Test network tables

Test.config

Configuration file for test network

7.7 Configuration Keys

Table 45 below lists the TRANSIMS configuration file keys that specify the location of network

data files.

Table45: Network file configuration keys.

Configuration Key
NET DIRECTORY

Description
Directory where the network files reside.

NET_NODE TABLE

Node table name.

NET LINK_TABLE

Link table name.

NET_POCKET LANE TABLE

Pocket 1ane table name.

NET_PARKING_TABLE

Parking table name.

NET_LANE_CONNECTIVITY_TABLE

L ane connectivity table name.

NET_UNSIGNALIZED_NODE_TABLE

Unsignalized node table name.

NET_SIGNALIZED_NODE_TABLE

Signalized node table name.

NET_PHASING_PLAN_TABLE

Phasing plan table name.

NET TIMING_PLAN_TABLE

Timing plan table name.

NET_SPEED_TABLE

Speed table name.

NET LANE USE TABLE

Lane use table name.

NET _TRANSIT STOP TABLE

Transit stop table name.

NET_SIGNAL_COORDINATOR_TABLE

Signal coordinator table name.

NET_DETECTOR_TABLE

Detector table name.

TRANSIMS-LANL-1.0 — Files— May 1999

LA-UR —99-2579

Page 93

Configuration Key
NET_TURN_PROHIBITION_TABLE

Description
Turn prohibition table name.

NET_BARRIER_TABLE

Barrier table name.

NET_ACTIVITY_LOCATION_TABLE

Activity location table name.

NET _PROCESS LINK_TABLE

Process link table name.

NET_STUDY AREA LINKS TABLE

Study area links table name.

NET_LINK_MEDIAN_HALFWIDTH

Default half-width (meters) of the median between lanes on
alink.

’ To correspond with the |lOC-2 TRANSIMS
Visualization tool, this parameter must be assigned a value
of 0.5* GBL_LANE WIDTH.

7.8 Examples

Figure 2 shows the layout of the network used for testing various TRANSIM S modules and Figure
3 gives the configuration file for the network. This network contains most of the network objects
availablein TRANSIMS; it can be used for testing code or in simulations of traffic. Table45 lists
the configuration keys for this network and Table 46 through Table 63 list the contents of the

tables.
Figure2: Layout of test network.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 94

LA-UR —99-2579

i 1 1 : 7 1
T”‘" Stop #3005
Node #8610 Node # 14142 ‘ e Parking #1006 ’ Slav. 1000m.
jode elev. 1000m fode elev. 1000m._ [] Detector #5005
I o e 7 SnaoLnY
B T TvaLRsn T Pain T v Srenveiie
— o FS—ET 7T o] - e TIGRTRATLBUS, R
, FOUIEOE 2
= hi k#2753 Detector 5001 AUTOMHOVATEUS 3 .)
>}5 I 250m. Link #2752 o "
=i ol
Szl | | 315
SiEl 1|8 - o |2E
SR e = Detector #5002 Eloojee
I #* F) = 212
3| x = YIS
2| |2 ® B i
a 1= g G [l |
ARE 5 2l !
g 2l & BB
3 ==
Ed n 919/9| |
Slo 53 |
£12| stop#a00a @ GG |
Z2| swop 10
3 Node #8522 elev. 1000m Node #14141 clev.1000m. | 1 I
] -] i
ol 1 | Node #8600 apeib 30,91 T omv___® —5 iy el
Lo
oLlny z -
olny L] 3 o1ny
K ¢ 5 AUTO
i Q : [
3 AUTO
A AUTG Py
, E
i elev. 750m. Link #2754 elev. 1000m. AUTO 3
I | asom LI
! a Link #11487 Link #11495 I
200m. X o|a00m. i
LBamer #9001 I
qjr v !
ol | i
Sl gigigigl /= [
2 SI51515 i
Siolo SEEE EE R
222 Qg
FIEIE
z212 o9
£ 35
1500m. 5 =1
o =3
8 > ES | | el
8 5 & o
g 3 | s S0 L !
x R @ ~
£ 5 & 21212 i
I 5 @ S |55 I
i x olo!o| |
[£ { [I
15 5 Parking #1001 [i
2 ool
R AUTO o INEEE
G2 2,312
3 olslo
b |~ 00m. 51515
5 2122
Node #8520
S f % elev. 1000m.
[
1omy =N
[S|
I [=
I [E
olololo]
2i2i2i2 3
[R 5151515 4
TR ro = [=l il of
c
e 5 -]
2 z o
g ° AN ol <l o
. 2 E N
& 2 8
< < b3 I
ziziziz |
! s s s s AUTOITAXI
arking #1002
Parking #1004 9
—-‘mﬂm e
Node #8523 Node #8521 /& __Link #12407 "
g oLny, oy __ ¢ ____
L oLlny oLlny L)
W%D = EU PRI Node #14136
[AUTO 2 am = 2 AUTO x i elev. 1000m.
elev. 1000m. Link #9704 elev. 1000m. }
Parking #1003 !
0 |
gigigiole
<
g 2R3\ 8
s | &
2 o E
" LA ¥ s ol e [ol <l o] 2
£ VY E
5 =
» 22lnly |
g zZizzig
5 SISSIS |
3 31330 i
I
]
T >l Stop #3001
opei (s ST sasnq) [
s Node #8606 PRIB LD oy posds 4| Node #8524 i/ o v posis L Wl Node #8603 |
z oLnv. __mo [__Z snajoLnv.
T _OLNV/IVHIHON
R
L — GHTRALAUTO. s _UGTRALESS. o s O
AN N >~ AUTOBUS m,‘ e P AUTOBUS m:%&“ ‘¢
northing 500m. & ‘<~ Link #2757 speed IMU1SMS o0y J000m. Link #2758 L 2
easting 500m. Stop #3002 “parking #105000m. Node #8525 lev. 10001
elev. 900m. Stop #3003 speed limit 20 mis 9 m Link #2759 elev. 1000m.

(buses 15 ms)

Node #8608

Node #14340

Stop #3006

TRANSIMS-LANL-1.0 - Files— May 1999

LA-UR - 99-2579

Page 95

Figure3: Test network configuration file.

Networ k subsystem configuration keys for the test network.

The directory where the network files reside.
NET_DI RECTORY / hone/ pr oj ect s/ t r ansi ms/ net wor ks/ t est

The node tabl e nare.
NET_NODE_TABLE Test _Node_Tabl e

The |ink table nare.
NET_LI NK_TABLE Test _Li nk_Tabl e

The pocket |ane table nane.
NET_POCKET_LANE_TABLE Test_Pocket _Lane_Tabl e

The parking table nane
NET_PARKI NG _TABLE Test _Par ki ng_Tabl e

The | ane connectivity table nane.
NET_LANE_CONNECTI VI TY_TABLE Test _Lane_Connectivity_Tabl e

The unsignal i zed node tabl e nane.
NET_UNSI GNALI ZED_NODE_TABLE Test _Unsi gnal i zed_Node_Tabl e

The signalized node table nane.
NET_SI GNALI ZED NCDE_TABLE Test _Si gnal i zed_Node_Tabl e

The phasing pl an tabl e nane.
NET_PHASI NG_PLAN_TABLE Test _Phasi ng_Pl an_Tabl e

The timng plan table nane.
NET_TI M NG_PLAN _TABLE Test_Ti mi ng_Pl an_Tabl e

The speed tabl e nane.
NET_SPEED TABLE Test _Speed_Tabl e

The | ane use table nare.
NET_LANE_USE_TABLE Test _Lane_Use_Tabl e

The transit stop table nane.
NET_TRANSI T_STOP_TABLE Test _Transit_St op_Tabl e

The signal coordinator table nare.
NET_SI GNAL_COORDI NATOR_TABLE Test _Si gnal _Coor di nat or _Tabl e

The detector table nare.
NET_DETECTOR _TABLE Test _Det ect or _Tabl e

The turn prohibition table nane.
NET_TURN_PRCH BI TI ON_TABLE Test _Tur n_Pr ohi bi ti on_Tabl e

The barrier table nane.
NET_BARR ER TABLE Test_Barrier_Tabl e

The activity location table nane.
NET_ACTI VI TY_LOCATI ON_TABLE Test _Activity_Location_Tabl e

The process link table nane.
NET_PROCESS_LI NK_TABLE Test _Process_Li nk_Tabl e

The study area |links table nane.
NET_STUDY_AREA LI NKS_TABLE Test _Study_Area_Li nk_Tabl e

The hal f-width (neters) of the median on a link.
Default value if this keyword is omtted is 0.5 * GBL_LANE_W DTH NET_LI NK_MEDI AN_HALFW DTH

TRANSIMS-LANL-1.0 - Files- May 1999
LA-UR — 99-xxx

Page 96

Table46: Test nodetable.

ID EASTING NORTHING ELEVATION NOTES
8520 3000 2500 1000
8521 2000 1500 1000
14136 | 3000 1500 1000
14141 | 3000 4000 1000
14142 | 3000 5000 1000
14340 | 4000 4000 1000
8525 3000 500 1000
8522 2000 4000 1000
8523 1000 1500 1000
8524 2000 500 1000
8606 500 500 900
8603 4000 500 1000
8608 4000 5000 1000
8600 500 4000 750
8610 500 5000 1000

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 97

Table47: Test link table.

LENGTH GRADE SETBACKA SETBACKB
1000

CAPACITYA CAPACITYB SPEEDLMTA

SPEEDLMTB FREESPDA FREESPDB FUN
OTHI

4th Street

4th Street

000

000

000

000

000

S[s|3|3]3|s
S[s|3|3]3|s

000

TRANSIMS-LANL-1.0 - Files- May 1999
LA-UR — 99-xxx

Page 98

Table48: Test speed table.

LINK NODE SPEEDLMT FREESPD VEHICLE STARTTIME ENDTIME NOTES

2758

8524

15

20

BUS

ALL00:00

ALL24:00

2758

8525

15

18

BUS

ALL00:00

ALL24:00

Table49: Test pocket lanetable.

ID NODE LINK OFFSET LANE STYLE LENGTH NOTES
85201 | 8520 12384 |0 1 M 100
85206 | 8520 12384 |0 6 M 200
85213 | 8521 12407 | 450 3 P 100
141411 | 14141 28800 |0 1 T 200
141416 | 14141 28800 |0 6 T 300

Table50: Test laneusetable.

NODE LINK LANE VEHICLE RESTRICT STARTTIME ENDTIME NOTES
8606 2757 2 AUTO/HOV3 | O ALL00:00 ALL24:00
8524 2757 1 LIGHTRAIL R ALL00:00 ALL24:00
8524 2758 1 LIGHTRAIL R ALL00:00 ALL24:00
8524 2758 2 AUTO R ALL00:00 ALL24:00
8525 2758 1 AUTO N ALL00:00 ALL24:00
8525 2758 2 LIGHTRAIL N ALL00:00 ALL24:00
8606 2756 1 LIGHTRAIL R ALL00:00 ALL24:00
8600 2756 1 LIGHTRAIL R ALL00:00 ALL24:00
8600 2755 2 LIGHTRAIL N ALL00:00 ALL24:00
8610 2755 1 LIGHTRAIL R ALL00:00 ALL24:00
14142 2752 1 LIGHTRAIL R ALL00:00 ALL24:00
14142 2752 2 AUTO R ALL00:00 ALL24:00
8608 2752 1 AUTO N ALL00:00 ALL24:00
8608 2752 1 LIGHTRAIL R ALL00:00 ALL24:00

Table51: Test parking table.

ID NODE LINK OFFSET STYLE CAPACITY GENERIC VEHICLE STARTTIME ENDTIME NOTES
1001 |8520 |28800 {400 LOT 50 T IAUTO JALL00:00 JALL24:00
1002 |14136 |12384 (300 PRSTR |10 T IAUTO/TAX] JALL00:00 JALL24:00
1003 |14136 12407 (200 HISTR |10 T IANY JALL00:00 JALL24:00
1004 8521 |12407 (200 DRVWY |1 F IANY JALL00:00 JALL24:00
1005 |8525 |2758 (370 LOT 1 F BUS JALL00:00 JALL24:00
1006 |14142 2752 [650 LOT 0 F ANY JALL00:00 JALL24:00

Table52: Test barrier table.

ID NODE
9001 | 8600

LINK OFFSET LANE STYLE LENGTH NOTES
2756|450 1 BARRIER | 200

TRANSIMS-LANL-1.0 - Files- May 1999
LA-UR — 99-xxx

Page 99

Table53: Test transit stop table.

1D NAME NODE LINK OFFSET VEHICLE STYLE CAPACITY NOTES
3001 | 1st& CNE | 8525 2759 400 BUS STOP 25

3002 | 1st& CSW | 8525 2758 350 BUS/LIGHTRAIL | STATION |0

3003 |1st& B 8524 2757 650 LIGHTRAIL YARD 0

3004 | 4th& A 8610 2755 600 LIGHTRAIL STOP 200

3005 | 4th& C 14142 [2752 650 BUS/LIGHTRAIL | STATION |0

3006 | 3rd& D 14340 [2750 400 BUS STOP 1

Table54: Test lane connectivity table.

NODE INLINK INLANE OUTLINK OUTLANE NOTES
14141 11487 1 11486 1
14141 11487 2 11486 2
14141 11487 3 11495 1
14141 11487 4 11495 2
14141 11487 5 11495 3
14141 11487 6 28800 3
14141 11486 1 11495 1
14141 11486 2 28800 1
14141 11486 3 28800 2
14141 11486 3 11487 3
14141 11495 1 28800 1
14141 11495 2 28800 2
14141 11495 3 11487 1
14141 11495 4 11487 2
14141 11495 5 11487 3
14141 11495 6 11486 3
14141 28800 1 11487 1
14141 28800 2 11487 2
14141 28800 3 11486 1
14141 28800 4 11486 2
14141 28800 5 11486 3
14141 28800 6 11495 3
8520 12384 2 28800 2
8520 12384 3 28800 3
8520 12384 4 28800 4
8520 12384 5 28800 5
8520 28800 1 12384 1
8520 28800 2 12384 2
8520 28800 3 12384 3
8520 28800 3 12384 4
14136 12407 1 12384 1
14136 12407 2 28804 4
14136 12384 1 28804 1
14136 12384 2 28804 2
14136 12384 3 28804 3
14136 12384 4 28804 4
14136 12384 4 12407 2
14136 28804 1 12407 1
14136 28804 1 12384 2
14136 28804 2 12384 3
14136 28804 3 12384 4
14136 28804 4 12384 5

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 100

NODE INLINK INLANE OUTLINK OUTLANE NOTES
14136 28804 5 12384 6
8521 12407 1 9704 1
8521 12407 1 9706 1
8521 12407 2 9704 2
8521 12407 2 9705 1
8521 9704 1 12407 1
8521 9704 1 9705 1
8521 9704 2 12407 2
8521 9704 2 9706 1
8521 9705 1 9706 1
8521 9705 1 9704 2
8521 9705 1 12407 1
8521 9706 1 9705 1
8521 9706 1 12407 2
8521 9706 1 9704 1
14340 2750 1 11495 1
14340 2750 2 11495 2
14340 2750 2 11495 3
14340 2750 3 2751 1
14340 2750 3 2751 2
14340 11495 1 2751 1
14340 11495 2 2751 2
14340 11495 2 2750 1
14340 11495 3 2750 2
14340 2751 1 2750 1
14340 2751 1 11495 4
14340 2751 2 2750 2
14340 2751 2 11495 5
14340 2751 3 11495 6
8608 2751 1 2752 1
8608 2751 2 2752 2
8608 2752 1 2751 1
8608 2752 1 2751 2
8608 2752 2 2751 3
8603 2759 1 2750 1
8603 2759 2 2750 2
8603 2759 3 2750 3
8603 2750 1 2759 1
8603 2750 2 2759 2
8606 2757 1 2756 1
8606 2757 1 2756 2
8606 2757 2 2756 3
8606 2756 1 2757 1
8606 2756 2 2757 2
8610 2753 1 2755 1
8610 2755 1 2753 1
8600 2756 1 2755 1
8600 2756 2 2755 2
8600 2756 2 2754 3
8600 2756 3 2754 4
8600 2754 1 2756 1
8600 2754 2 2755 2
8600 2755 1 2756 1
8600 2755 2 2756 2
8600 2755 1 2754 1

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 101

NODE INLINK INLANE OUTLINK OUTLANE NOTES
14142 2753 1 2752 1
14142 11486 3 2752 2
14142 2752 1 2753 1
14142 2752 2 11486 1
8522 2754 1 11487 2
8522 2754 2 11487 3
8522 2754 3 11487 4
8522 2754 4 11487 5
8522 2754 4 9705 1
8522 9705 1 11487 6
8522 11487 1 9705 1
8522 11487 2 2754 1
8522 11487 3 2754 2
8524 2758 1 2757 1
8524 2758 2 2757 2
8524 2758 2 9706 1
8524 9706 1 2757 2
8524 9706 1 2758 2
8524 2757 1 2758 1
8524 2757 2 2758 2
8524 2757 1 9706 1
8525 2758 1 2759 2
8525 2758 2 2759 3
8525 2759 1 2758 1
8525 2759 2 2758 2
8525 2759 2 28804 5
8525 2758 2 28804 1
8525 28804 1 2759 1
8525 28804 2 2759 2
8525 28804 3 2759 3
8525 28804 4 2758 2

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 102

Table55: Test unsignalized node table.

NODE INLINK SIGN NOTES
8520 12384 Y
8520 28800 N
14136 | 12407 S
14136 | 12384 N
14136 | 28804 N
8610 2753 N
8610 2755 N
14142 | 2753 N
14142 | 11486 S
14142 | 2752 N
8608 2751 N
8608 2752 N
8600 2756 N
8600 2754 S
8600 2755 N
8522 2754 N
8522 9705 S
8522 11487 N
14340 | 2751 S
14340 | 11495 S
14340 | 2750 S
8606 2756 N
8606 2757 N
8524 2757 N
8524 2758 N
8524 9706 Y
8525 2758 N
8525 2759 N
8525 28804 S
8603 2759 N
8603 2750 N

Table56: Test signalized nodetable.

NODE TYPE PLAN OFFSET STARTTIME COORDINATR RING ENTRY NOTES

14141 | T 1 19 ALLO00:00 0 S S
8521 A 2 0 ALL18:00 0 S S
8521 A 3 0 WKDO07:00 0 S S

TRANSIMS-LANL-1.0 — Files— May 1999

LA-UR —99-2579

Page 103

Table57: Test phasing plan table.

NODE PLAN PHASE INLINK OUTLINK PROTECTION NOTES

14141 1 1 11487 11495 U
14141 1 1 11487 28800 P
14141 1 1 11495 11487 U
14141 1 1 11495 11486 P
14141 1 1 11486 11487 S
14141 1 1 28800 11495 S
14141 1 2 11487 28800 P
14141 1 2 11495 11486 P
14141 1 2 11486 11495 P
14141 1 2 28800 11487 P
14141 1 2 28800 11495 S
14141 1 2 11486 11487 S
14141 1 3 11487 28800 P
14141 1 3 28800 11487 P
14141 1 3 28800 11486 U
14141 1 3 28800 11495 P
14141 1 3 11495 11486 S
14141 1 3 11486 11487 S
14141 1 4 11487 28800 P
14141 1 4 11486 11495 U
14141 1 4 11486 28800 U
14141 1 4 11486 11487 P
14141 1 4 28800 11486 U
14141 1 4 28800 11495 P
14141 1 4 11495 11486 S
14141 1 5 11487 11486 P
14141 1 5 11487 28800 P
14141 1 5 11495 28800 P
14141 1 5 11495 11486 S
14141 1 5 11486 11487 P
14141 1 5 28800 11495 P
14141 1 6 11487 28800 P
14141 1 6 11495 28800 P
14141 1 6 11495 11487 U
14141 1 6 11495 11486 P
14141 1 6 11486 11487 S
14141 1 6 28800 11495 P
8521 2 1 9705 9704 U
8521 2 1 9705 9706 U
8521 2 1 9705 12407 U
8521 2 1 9706 9705 U
8521 2 1 9706 12407 U
8521 2 1 9706 9704 U
8521 2 2 12407 9704 U
8521 2 2 12407 9705 U
8521 2 2 12407 9706 U
8521 2 2 9704 12407 U
8521 2 2 9704 9705 U
8521 2 2 9704 9706 U
8521 3 1 9705 9704 U
8521 3 1 9705 9706 U
8521 3 1 9705 12407 U

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 104

NODE PLAN PHASE [INLINK OUTLINK PROTECTION NOTES

8521 3 1 9706 9705 U

8521 3 1 9706 12407 U

8521 3 1 9706 9704 U

8521 3 2 12407 9706 P

8521 3 2 9704 9705 P

8521 3 3 12407 9704 U

8521 3 3 12407 9705 U

8521 3 3 12407 9706 U

8521 3 3 9704 12407 U

8521 3 3 9704 9705 U

8521 3 3 9704 9706 U

Table58: Test timing plan table.

PLAN PHASE NEXTPHASES GREENMIN GREENMAX GREENEXT YELLOW REDCLEAR GROUPFIRST NOTES

1 1 2 35 0 0 4 0 1

1 2 3 5 0 0 3 0 0

1 3 4 8 0 0 3 0 0

1 4 5 32 0 0 4 0 0

1 5 6 9 0 0 3 0 0

1 6 1 1 0 0 3 0 0

2 1 2 12 30 4 3 0 1

2 2 1 10 40 4 3 0 0

3 1 2 12 30 4 3 1 1

3 2 3 4 8 2 3 0 0

3 3 1 10 20 4 3 1 0

Table59: Test detector table.

ID NODE LINK OFFSET LANEBEGIN LANEEND LENGTH STYLE COORDINATR NOTES

5001 | 14142 2753 350 1 1 3 PASSAGE 1000

5002 | 14142 11486 | 250 1 3 3 PRESENCE | 1000

5005 | 14142 2752 300 1 2 3 PASSAGE 1000

Table60: Test signal coordinator table.

ID TYPE ALGORITHM NOTES

1000

Table61: Test activity location table.

ID NODE LINK OFFSET LAYER EASTING NORTHING ELEVATION ACCESS HOME WORK NOTES

23 | 8524 9706 200 AUTO 2000 700 1000 0.00 1.0 0.0
[24 [8s21 [12407 [300 [BUS [2300 [1500 [1000 | 37. [00 [10 |

Table62: Test processlink table.

ID FROMID FROMTYPE TOID TOTYPE DELAY COST NOTES

123 | 3003 TRANSIT 23 ACTIVITY |10 20

124 |24 ACTIVITY 1003 | PARKING |30 40

TRANSIMS-LANL-1.0 — Files— May 1999 Page 105

LA-UR —99-2579

Table63: Test study arealink table.

ID BUFFER NOTES
9704

9705

9706

11486

11487

11495

12384

12407

28800

28804

2759

2750

2751

2752

2753

2755

2754

2756

2757

<< <K<K I<|<|<<L[<|Z|Z|Z|Z|Z|Z2|Z2|Z2|Z2|Z2

2758

TRANSIMS-LANL-1.0 — Files— May 1999 Page 106
LA-UR —99-2579

8. SIMULATION QUTPUT

This TRANSIMS Simulation Output subsystem collects data from a running microsimulation and
stores it for subsequent examination by the analyst or use by other TRANSIMS software
components. It provides a software layer that insulates applications from the details of thefile
structure and provides greet flexibility in the specification of the data to be collected.

Two very different modes of data collection are supported. The original mode, used in 10C-1,
collects data in binary format on the local file system of each CPN used by the simulation. This
data is postprocessed to mergeit into asinglefilefor analysis. The newer mode developed for
IOC-2 uses a paralld communication library to collect data in ASCII format into a singlefile
written by the master simulation process. No postprocessing is required with this mechanism.

8.1 Terms

Event Data Event data reports when an interesting event occurs for atraveler. Events are
recorded as they occur, at irregular timeintervals.

Evolution Data Evolution data, also known as snapshot data, provides detailed information
about how the state of the simulation evolvesin time. Evolution data may be
recorded on every timestep or less frequently, as desired.

Summary Data Summary data reports aggregate data about the simulation. Summary datais
sampled, accumulated, and reported periodically throughout the simulation.

8.2 File Format

This section describes the file formats of each of the eight types of simulation outputs currently
implemented. All fields are described, but the filtering capability described in Section 8.3 allows
suppression of any output field for which the analyst has no interest, thus resulting in smaller
output files. Applications that read the output produced by the simulation should always use the
functions for reading that are described in Section 8.3. The functions provided by the output
representation automatically handle records with suppressed fidlds and only attempt to read the
fields that were actually written. This enables the implementation of general postprocessing
applications that need not be cognizant of the number and order of the fields written by the
simulation.

8.2.1 Traveler Event

Traveler event records are output by the microsimulation each time an event that is of interest to
the analyst occurs for atraveler. The simulation timeinterval during which to record eventsis
defined in the input configuration file. Filtering capabilities are provided so that the analyst may
choose which of the many potentially interesting events should be recorded. The events that may
be of interest are specified in the STATUS and ANOMALY output fieldsin Table 64. The other
fields describe the traveler’ s state at the time the event occurred.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 107
LA-UR —99-2579

Table64: Traveler event record fieds.

Field Description

TIME

Current time (seconds from midnight).

TRAVELER

Traveler ID.

TRIP

Traveer'strip ID.

LEG

Traveler's plan leg ID.

VEHICLE

VehicleID; value= 0 if not in a vehicle.

VEHTYPE

Vehicle type:
0 =walk
1=auto
2 =truck
3 = hicycle
4 = taxi
5= bus
6 =trolley
7 = streetcar
8 = light rail
9 = rapid rail

10 = regional rail

VSUBTYPE

Vehicle subtype may be unused; value = 0 if not applicable.

ROUTE

Transit route ID; value = -1 if not in atransit vehicle.

STOPS

Count of number of stop signs encountered on current plan leg.

YIELDS

Count of number of yield signs encountered on current plan leg.

SIGNALS

Number of traffic signals encountered on current plan leg.

TURN

Type of last turn made:
0 = straight direction (no turn)
1 =right turn

-1 = left turn
2 = hardright turn

-2 = hard left turn
values 3 to 6 represent increasingly more extreme right turns
values —3 to —6 represent increasingly more extreme left turns
-7 = reverse direction (U-turn)

STOPPED

Time (seconds) spent stopped on current plan leg.

ACCELS

Time (seconds) spent accelerating from 0 on current plan leg.

TIMESUM

Total time (seconds) spent on current plan leg.

DISTANCESUM

Total distance (meters) traveled on current plan leg (see accompanying text for more

information).

USER

Analyst-defined field: any integer value is acceptable, and definition may vary with

each case study.

ANOMALY

Type of anomaly:
0 = no anomaly occurred
1 =traveler is off plan
2 = traveler cannot find next link in plan
3 = traveler cannot find next parking placein plan
4 = traveler cannot find next vehiclein plan
5 = traveler cannot find next transit stop in plan
6 = traveler cannot board full transit vehicle

7 = driver of transit vehicle skipped stop that had passengers waiting to board
8 = driver of vehicle cannot change lanes because of congestion

TRANSIMS-LANL-1.0 — Files— May 1999

LA-UR —99-2579

Page 108

Field Description

STATUS

Traveler’s current status bits: (see accompanying text for a detailed explanation of
status bit interpretation).

0x1 = traveler ison alink (persistent)
0x2 = changein traveler’s on-link status
0x4 = traveler is on a leg (persistent)
0x8 = changein traveler’'s on-leg status

0x10 = change in traveler’ s on-trip status

0x20 = traveler is non-motorized, i.e., walking, bicycling (persistent)
0x40 = traveler is not in the study area (persistent)

0x80 = change in traveler’ s in-study area status

0x100 = traveler isin a vehicle (persistent)

0x200 = changein traveler’s vehicle occupancy status
0x400 = traveler isthe driver (persistent)

0x800 = changein traveler’s driver status

0x1000 = traveler is waiting at some location (persistent)
0x2000 = change in traveler’ s waiting status

0x4000 = location is a parking place (persistent)

0x8000 = location is a transit stop (persistent)

0x10000 = driver of transit vehicleis at a transit stop (persistent)
0x20000 = changein driver’ stransit vehicle at stop status
0x40000 = driver of transit vehicleis on alayover (persistent)
0x80000 = changein driver’ s transit vehicle on layover status

0x100000 = driver’s transit vehicleis full (persistent)
0x200000 = changein driver’ s transit vehicle full status
0x400000 = traveler is off plan (persistent)

0x800000 = changein traveler’ s off-plan status

0x1000000 = beginning of simulation

0x2000000 = end of simulation

0x4000000 = location is an activity location (persistent)
0x8000000 = undefined

0x10000000 = undefined
0x20000000 = undefined
0x40000000 = undefined
0x80000000 = undefined

TRANSIMS-LANL-1.0 — Files— May 1999 Page 109

LA-UR —99-2579

Field Description

Where traveler islocated: link 1D, parking place ID, transit stop ID, or activity
location ID, depending on the event as defined here

LOCATION

EVENT
Enter/Exit/On link
Begin/End plan leg
Begin/End trip
Enter/Exit study area
Enter/Exit vehicle
Begin/End driving
Waiting for transit
Waiting at parking
Begin/End activity
Transit vehicle at stop
Transit vehicle on layover
Transit vehicle full
Off plan
Begin/End Simulation
Can't find link
Can't find parking
Can't find vehicle
Can't find transit stop
Can't board transit
Skipped transit stop
Can't change lanes

LOCATION value
link ID
parking place ID or transit stop 1D
parking place ID or transit stop ID
link ID
parking place ID or transit stop ID
parking place ID or transit stop ID
transit stop ID
parking place D
activity location 1D
transit stop ID
transit stop ID
transit stop ID
link ID
link ID
link ID
parking place D
parking place D
transit stop ID
transit stop ID
transit stop ID
link ID

The STATUS fidd is bit-oriented. Each bit represents a characteristic about the traveler that is
true whenever the bit is set. Multiple bits set means that multiple characteristics aretrue at this
time. Interpretation of the STATUS field involves determining which combination of
characteristics is currently true according to the table that describes the individual bits. Itis
convenient to view the STATUS field in hexadecimal notation as this more clearly illuminates the
patterns in the fidd.

Status values are generally represented in bit pairs. Thelower bit of a pair is termed the persistent
bit, and the upper bit is termed the change bit. The persistent bit is set during the entire time that
the condition istrue. The change bit is set only for the timestep when a change in the persistent bit
occurs. This scheme allows the analyst to identify the beginning and end of a persistent condition
without comparing multiple events.

For example, when a traveler begins a leg, the persistent bit representing on leg (0x4) is set, and
the change bit representing change in on leg (0x8) is set. Whilethetraveler is on theleg, the
persistent bit (0x4) remains set, and the change bit (0x8) is cleared. When the traveler ends the
leg, the persistent bit (0x4) is cleared, and the change bit (0x8) is again set for one timestep. While
thetraveler isnot on a leg (e.g., while waiting somewhere) both the persistent bit (0x4) and the
change bit (0x8) are cleared.

A few of the status bits occur singly rather than in pairs because both bits are not required. For
example, a persistent bit for on trip is not needed because travelers are only simulated while they
areon atrip. A persistent bit that is always set provides no additional information and clutters the

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 110

output, and therefore is not used. The non-motorized bit (0x20) is used in conjunction with the on
leg bits to indicate that the leg does not involve vehicular travel.

Thelocation type identification bits (0x4000, 0x8000, and 0x4000000) are used in two ways:
They are used in conjunction with bits 0x1000 and 0x2000 to identify the type of the location at
which thetraveler iswaiting. They are also used to specify the type of location when the
LOCATION fied represents a parking place or transit stop ID. For example, when atraveler
begins a leg at a parking place, bit 0x4000 will be set in addition to bits 0x4 and 0x8 to signify that
the beginning location of the leg is a parking place.

The DISTANCESUM fidd accumulates the distance traveled along links and within intersections.
Upon entering the intersection, DISTANCESUM s incremented by the setback on thelink just left,
and when exiting the intersection, DISTANCESUM is incremented by the setback on new link.

8.2.2 Vehicle Snapshot

Vehicle snapshot data provides information about vehicles traveling on alink. When collected for
every link on every timestep, this gives a complete trajectory for each vehicle in the simulation.
Vehicle snapshot data is collected as frequently as the analyst indicates in the input configuration
filefor the specified links.

Table65: Vehicle snapshot record fields.

Field Inter pretation

VEHICLE VehicleID.
TIME Current time (seconds from midnight).
LINK Link ID on which the vehicle was traveling.
NODE Node ID vehicle was traveling away from.
LANE Number of the lane on which the vehicleis traveling.
DISTANCE Distance (in meters) the vehicle is away from the setback of the node from which it is traveling
away .
VELOCITY Velocity (in meters per second) of the vehicle.
VEHTYPE Vehicle type:
0=walk
1=auto
2 =truck
3 = bicycle
4 = taxi
5= bus
6 =trolley
7 = streetcar
8 = light rail
9 =rapid rail
10 = regional rail
ACCELER Acceeration (in meters per second) the vehicle had in the current timestep.
DRIVER Driver ID.
PASSENGERS | Count of passengersin vehicle.
EASTING Vehicl€ s x-coordinate (in meters).
NORTHING Vehicl€ s y-coordinate (in meters).
ELEVATION Vehicl€e's z-coordinate (in meters).
AZIMUTH Vehicl€ s orientation angle (degrees from east in the counterclockwise direction).
USER User-defined field that can be set on a per-vehicle basis.
TRANSIMS-LANL-1.0 — Files— May 1999 Page 111

LA-UR —99-2579

8.2.3 Intersection Snapshot

Intersection snapshot data provides information about a vehicle asit is traversing an intersection.
This data is collected as frequently as the analyst indicates in the input configuration file for the

specified nodes.

Table66: Intersection snapshot record fields.

Field Interpretation

VEHICLE |VehiclelD.

TIME Current time (seconds from the midnight).

NODE Node ID where the vehicleis located.

LINK Link ID from which the vehicle entered.

LANE Number of the lane from which the vehicle entered.
QINDEX | Vehicle position in the intersection buffer.

8.2.4 Traffic Control Snapshot

Traffic control snapshot data reports the current state of the traffic signal at anode. This datais
collected as frequently as the analyst indicates in the input configuration file for the specified

nodes.

Table67:

Traffic control snapshot record fields.

Field Interpretation

NODE Node ID where the signal is located.
TIME Current time (seconds from midnight).
LINK Link ID entering the signal.

LANE Number of the lane entering the signal.
SIGNAL | Typeof control present:

0: None

1: Stop
2:Yidd

3: Wait

4: Caution
5: Permitted
6. Protected

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 112

8.2.5 Link Travel Times Summary

Link travel time summary data reports counts of vehicles and travel times on links accumulated as
vehicles exit thelinks. This data is collected as frequently as the analyst indicates in the input
configuration file for the specified links. For I0C-2, there are separate data records for each
turning movement leaving each lane on the link.

Table68: Link travel times summary field records.

Field Interpretation

LINK Link 1D being reported.

NODE Node ID from which the vehicles were traveling away.

TIME Current time (seconds from midnight).

COUNT Number of vehicles leaving the link.

SUM Sum of the vehicle travel times (in seconds) for vehicles leaving thelink. (Thetime
spent in the previous intersection is included in this value.)

SUMSQUARES Sum of the vehicle travel time squares (in seconds squared) for vehicles leaving the
link. (The time spent in the previous intersection is included in this value.)

TURN Type of turn the vehicle made leaving the link.

LANE Lane number.

VCOUNT Number of vehicles on thelink.

VSUM Sum of vehicle velocities (in meters per second) on the link.

VSUMSQUARES | Sum of the squares of the vehicle velocities (in meters squared per second squared).

8.2.6 Link Densities Summary

Link density summary data reports counts and velocities of vehicles within boxes that partition the
link. Thisdatais collected as frequently as the analyst indicates in the input configuration file for
the specified links. For 10C-2, there are separate data records for each lane on the link. The box
length is specified in the input configuration file.

Table69: Link densitiessummary record fields.

Field Interpretation

LINK Link 1D being reported.

NODE Node ID from which the vehicles were traveling away.

DISTANCE Ending distance of the box (in meters) from the setback of the node from which the
vehicles were traveling away.

TIME Current time (seconds from midnight).

COUNT Number of vehiclesin the box.

SUM Sum of the vehicle velocities (in meters per second) in the box.

SUMSQUARES | Sum of the squares of the vehicle velocities (in meters squared per second squared).

LANE Lane number.

TRANSIMS-LANL-1.0 — Files— May 1999

Page 113

LA-UR —99-2579

8.2.7 Link Velocities Summary

Link velocity summary data reports histograms of veocities of vehicles within boxes that partition
thelink. Thisdatais collected as frequently as the analyst indicates in the input configuration file
for the specified links. Thebox length, number of histogram bins, and maximum velocity are
specified in the input configuration file. For the microsimulation used in 10C-2, the maximum
veocity istypically 37.5 m/s, and the velocity range is divided into five bins plus an overflow bin
extending to infinity. Histogram intervals are defined to be closed at the lower end of the bin and
open at the upper end.

Table70: Link velocities summary record fields.

Field Interpretation

LINK Link 1D being reported.

NODE Node ID from which the vehicles were traveling away.

DISTANCE | Ending distance of the box (in meters) from the setback of the node from which the
vehicles were traveling away.

TIME Current time (seconds from midnight).

COUNTO Number of vehicles with velocities in therange [0, 7.5).

COUNT1 Number of vehicles with velocities in therange [7.5, 15).

COUNT?2 Number of vehicles with velocities in therange [15, 22.5).

COUNT3 Number of vehicles with velocities in the range [22.5, 30).

COUNT4 Number of vehicles with velocities in the range [30, 37.5).

COUNT5 Number of vehicles with velocities in the range [37.5, infinity).

TRANSIMS-LANL-1.0 — Files— May 1999 Page 114

LA-UR —99-2579

8.2.8 Link Energy Summary

Link energy summary data reports histograms of energies (integrated power) of vehicles
accumulated as vehicles enter thelinks. Energy is defined as the sum of the vehicle s power over
each timestep, where power is defined as the velocity times the accd eration when the acceeration
is greater than zero. Vehicles are assumed to have zero power while they arein intersections. The
units for energy in 10C-2 are cdlls-squared per second-squared. (See the documentation for the
microsimulation for the definition of a cell.)

M | ink energy summary datais not used by the Emissions Estimator in this release.

This data is collected as frequently as the analyst indicates in the input configuration file for the
specified links. The number of histogram bins and maximum energy is specified in the input
configuration file. Histogram intervals are defined to be closed at the lower end of the bin and
open at the upper end.

Table71: Link energy summary record fields.

Field Interpretation

LINK Link 1D being reported.

NODE Node ID from which the vehicles were traveling away.

TIME Current time (seconds from midnight).

ENERGYO | Number of vehicles with integrated power in the range [0, energy_maximum/
number_bins).

ENERGY1 | Number of vehicles with integrated power in the second bin.
ENERGY?2 | Number of vehicles with integrated power in the third bin.
ENERGYn | Number of vehicles with integrated power in the range [energy _maximum, infinity).

8.3 Output Filtering

A variety of output filtering capabilities are provided in order to limit potentially voluminous
output to only thoseitems of interest in a particular simulation run. An unlimited number of
output specifications may be included in the simulation configuration file, allowing for very fine-
grained control of the output that is produced in the input configuration file.

Time-based filtering may be used to restrict data collection to a subset of the total run time by
specifying a starting and ending time. The frequency of reporting for evolution and summary data
and the sampling frequency for summary data are specified by the analyst in the input
configuration file.

Data collected may be restricted to a subset of nodes and links in the road network. Table 72
describes the fidds in the node specification file, and Table 73 describes the fields in the link
specification files. Regional filtering allows the specification of the corners of arectangular region
in which data should be collected. (Note that the microsimulator does not currently utilize regional
filtering.)

Table72: Node specification fields.

Field Description
NAME | Output file name.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 115
LA-UR —99-2579

Field Description
NODE | NodelD.

Table73: Link specification fields.

Field Description

NAME | Output file name.
LINK Link ID.

Data may be filtered by value, with only those items that pass all filters appearing in the output.
The supported operators for valuefiltering are indicated in Table 74. Data fields in arecord may
be suppressed, resulting in shorter records.

Table74: Valuefiltering operators.

Operators Interpretation

== equal to

I= not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

% an integer multiple of

1% not an integer multiple of

included in the list (alist is a string of values starting with the character [, ending with the
character], and where each value is separated by the character |)

I# not included in thelist

& has set bits

1& has cleared bits

8.4 Interface Functions

8.4.1 OutReadHeader
Sgnature: i nt Qut ReadHeader (FILE * file, TQutHeader * header)

Description: Read a header from an output table.

Argument: fil e — pointer to a Fl LE stream object.
header — pointer to an output table header structure defined in Section 8.5.1.

Return Value: Return nonzero if the header was successfully read, or zero if not.

8.4.2 OutWriteHeader

Sgnature: int QutWiteHeader (FILE * file, const TQutHeader *
header)

Description: Write a header to an output table.

Argument: fil e — pointer to a Fl LE stream object.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 116
LA-UR —99-2579

header — pointer to an output table header structure defined in Section 8.5.1.

Return Value: Return nonzero if the header was successfully written, or zero if not.

8.4.3 OutSkipHeader
Sgnature. int Qut Ski pHeader (FILE * file)

Description: Skip a header from an output table.
Argument: fil e — pointer to a Fl LE stream object.

Return Value: Return nonzero if the header was successfully skipped, or zerois not.

8.4.4 OutReadNodeSpecification

Sgnature. int Out ReadNodeSpecification (FILE * file,
TQut NodeSpeci f i cati onRecord * record)

Description: Read arecord from a node specification table.

Argument: fil e — pointer to a Fl LE stream object.
recor d — pointer to an output node specification record structure defined in
Section 8.5.2.

Return Value: Return nonzero if the record was successfully read, or zero if not.

8.4.5 OutWriteNodeSpecification

Sgnature: int QutWiteNodeSpecification (FILE * file, const
TQut NodeSpeci fi cati onRecord * record)

Description: Write arecord to a node specification table.

Argument: fil e — pointer to a Fl LE stream object.
recor d — pointer to an output node specification record structure defined in
Section 8.5.2.

Return Value: Return nonzero if the record was successfully written, or zero if not.

8.4.6 OutReadLinkSpecification

Sgnature: i nt Qut ReadLi nkSpecification (FILE * file,
TQut Li nkSpeci fi cati onRecord * record)

Description: Read arecord from a link specification table.
Argument: fil e — pointer to a Fl LE stream object.

record — pointer to an output link specification structure defined in
Section 8.5.3.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 117
LA-UR —99-2579

Return Value: Return nonzero if the record was successfully read, or zero if not.

8.4.7 OutWriteLinkSpecification

Sgnature: int QutWiteLinkSpecification (FILE * const
TQut Li nkSpeci ficati onRecord * record)

Description: Writearecord to a link specification table.

Argument: fil e — pointer to a Fl LE stream object.
record — pointer to an output link specification structure defined in
Section 8.5.3.

Return Value: Return nonzero if the record was successfully written, or zero if not.

8.4.8 OutReadTravelerEventHeader

Sgnature: i nt Qut ReadTr avel er Event Header (FILE * file, TQutHeader *
header, TQut Travel er Event Record * record)

Description: Read a header from atraveler event table.

Argument: fil e — pointer to a Fl LE stream object.
header — pointer to an output table header structure defined in Section 8.5.1.
recor d — pointer to atraveler event structure defined in Section 8.5.4.

Return Value: Return nonzero if the header was successfully read, or zero if not.

8.4.9 OutWriteTravelerEventHeader

Sgnature: int QutWiteTravel EventHeader (FILE * file, const
TQut Header * header, TQut Travel er Event Record * record)

Description: Write a header to atraveler event table.
Argument: fil e — pointer to a Fl LE stream object.
header — pointer to an output table header structure defined in Section 8.5.1.
recor d — pointer to atraveler event structure defined in Section 8.5.4.

Return Value: Return nonzero if the header was successfully written, or zero if not.

8.4.10 OutReadTravelerEvent

Sgnature. int Qut ReadTravel erEvent (FILE * file,
TQut Tr avel er Event Record * record)

Description: Read arecord from atraveler event table.

Argument: fil e — pointer to a Fl LE stream object.
recor d — pointer to atraveler event structure defined in Section 8.5.4.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 118
LA-UR —99-2579

Return Value: Return nonzero if the record was successfully read, or zero if not.

8.4.11 OutWriteTravelerEvent

Sgnature: int QutWiteTravel erEvent (FILE * file, const
TQut Tr avel er Event Record * record)

Description: Writearecord to atraveler event table.

Argument: fil e — pointer to a Fl LE stream object.
recor d — pointer to atraveler event structure defined in Section 8.5.4.

Return Value: Return nonzero if the record was successfully written, or zero if not.

8.4.12 OutReadVehicleEvolutionHeader

Sgnature: i nt Qut ReadVehi cl eEvol uti onHeader (FILE * file,
TQut Header * header, TCQut Vehi cl eEvol uti onRecord * record)

Description: Read a header from a vehicle evolution table.

Argument: fil e — pointer to a Fl LE stream object.
header — pointer to an output table header structure defined in Section 8.5.1.
r ecor d — pointer to a vehicle evolution structure defined in Section 8.5.5.

Return Value: Return nonzero if the header was successfully read, or zero if not.

8.4.13 OutWriteVehicleEvolutionHeader

Sgnature: int QutWiteVehicleEvolutionHeader (FILE * file, const
TQut Header * header, TCQut Vehi cl eEvol uti onRecord * record)

Description: Write a header to a vehicle evolution table.
Argument: fil e — pointer to a Fl LE stream object.
header — pointer to an output table header structure defined in Section 8.5.1.
r ecor d — pointer to a vehicle evolution structure defined in Section 8.5.5.

Return Value: Return nonzero if the header was successfully written, or zero if not.

8.4.14 OutReadVehicleEvolution

Sgnature. int CQut ReadVehicl eEvolution (FILE * file,
TQut Vehi cl eEvol uti onRecord * record)

Description: Read arecord from a vehicle evolution table.

Argument: fil e — pointer to a Fl LE stream object.
r ecor d — pointer to a vehicle evolution structure defined in Section 8.5.5.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 119
LA-UR —99-2579

Return Value: Return nonzero if the record was successfully read, or zero if not.

8.4.15 OutWriteVehicleEvolution

Sgnature: int QutWiteVehicleEvolution (FILE * file, const
TQut Vehi cl eEvol uti onRecord * record)

Description: Write arecord to a vehicle evolution table.

Argument: fil e — pointer to a Fl LE stream object.
r ecor d — pointer to a vehicle evolution structure defined in Section 8.5.5.

Return Value: Return nonzero if the record was successfully written, or zero if not.

8.4.16 OutReadIntersectionEvolutionHeader

Sgnature: i nt Qut Readl ntersectionEvol uti onHeader (FILE * file,
TQut Header * header, TQutlntersectionEvol uti onRecord *
record)

Description: Read a header from an intersection evolution table.

Argument: fil e — pointer to a Fl LE stream object.
header — pointer to an output table header structure defined in Section 8.5.1.
recor d — pointer to an intersection evolution structure defined in
Section 8.5.6.

Return Value: Return nonzero if the header was successfully read, or zero if not.

8.4.17 OutWritelntersectionEvolutionHeader

Sgnature: int QutWitelntersectionEvol uti onHeader (FILE * file,
const TCQut Header * header,
TQut I ntersecti onEvol uti onRecord * record)

Description: Write a header to an intersection evolution table.

Argument: fil e — pointer to a Fl LE stream object.
header — pointer to an output table header structure defined in
Section 8.5.1.
recor d — pointer to an intersection evolution structure defined in
Section 8.5.6.

Return Value: Return nonzero if the header was successfully written, or zero if not.

8.4.18 OutReadIntersectionEvolution

Sgnature: i nt Qut Readl ntersectionEvolution (FILE * file,
TQut I ntersecti onEvol uti onRecord * record)

Description: Read arecord from an intersection evolution table.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 120
LA-UR —99-2579

Argument: fil e — pointer to a Fl LE stream object.
recor d — pointer to an intersection evolution structure defined in Section 8.5.6.
Return Value: Return nonzero if the record was successfully read, or zero if not.

8.4.19 OutWritelntersectionEvolution

Sgnature: int QutWitelntersectionEvolution (FILE * file, const
TQut I ntersecti onEvol uti onRecord * record)

Description: Write arecord to an intersection evolution table.

Argument: fil e — pointer to a Fl LE stream object.
recor d — pointer to an intersection evolution structure defined in
Section 8.5.6.

Return Value: Return nonzero if the record was successfully written, or zero if not.

8.4.20 OutReadTrafficControlEvolutionHeader

Sgnature: int QutReadTrafficControl Evol uti onHeader (FILE * file,
TQut Header * header, TQutTrafficControl EvolutionRecord *
record)

Description: Read a header from a traffic control evolution table.

Argument: fil e — pointer to a Fl LE stream object.
header — pointer to an output table header structure defined in Section 8.5.1.
recor d — pointer to atraffic control evolution structure defined in
Section 8.5.7.

Return Value: Return nonzero if the header was successfully read, or zero if not.

8.4.21 OutWriteTrafficControlEvolutionHeader

Sgnature: int QutWiteTrafficControl Evol uti onHeader (FILE * file,
const TCQut Header * header,
TQut Traf fi cCont rol Evol uti onRecord * record)

Description: Write a header to a traffic control evolution table.

Argument: fil e — pointer to a Fl LE stream object.
header — pointer to an output table header structure defined in Section 8.5.1.
recor d — pointer to atraffic control evolution structure defined in
Section 8.5.7.

Return Value: Return nonzero if the header was successfully written, or zero if not.

8.4.22 OutReadTrafficControlEvolution

Sgnature: int QutReadTrafficControl Evolution (FILE * file,
TQut Traf fi cCont rol Evol uti onRecord * record)

TRANSIMS-LANL-1.0 — Files— May 1999 Page 121
LA-UR —99-2579

Description: Read arecord from a traffic control evolution table.

Argument: fil e — pointer to a Fl LE stream object.
recor d — pointer to a traffic control evolution structure defined in
Section 8.5.7.

Return Value: Return nonzero if the record was successfully read, or zero if not.

8.4.23 OutWriteTrafficControlEvolution

Sgnature: int QutWiteTrafficControl Evolution (FILE * file, const
TQut Traf fi cCont rol Evol uti onRecord * record)

Description: Writearecord to a traffic control evolution table.

Argument: fil e — pointer to a Fl LE stream object.
record — pointer to atraffic control evolution structure defined in
Section 8.5.7.

Return Value: Return nonzero if the record was successfully written, or zero if not.

8.4.24 OutReadLinkTimeSummaryHeader

Sgnature: i nt Qut ReadLi nkTi meSunmmar yHeader (FILE * file, TOutHeader
* header, TOQutLi nkTi meSummaryRecord * record)

Description: Read a header from alink time summary table.
Argument: fil e — pointer to a Fl LE stream object.

header — pointer to an output table header structure defined in Section 8.5.1.
recor d — pointer to alink time summary structure defined in Section 8.5.8.

Return Value: Return nonzero if the header was successfully read, or zero if not.

8.4.25 OutWriteLinkTimeSummaryHeader

Sgnature: int QutWiteLi nkTi neSuunmar yHeader (FILE * file, const
TQut Header * header, TQutLi nkTi meSummaryRecord * record)

Description: Write a header to alink time summary table.
Argument: fil e — pointer to a Fl LE stream object.
recor d — pointer to an output table header structure defined in Section 8.5.1.
TQut Li nkTi meSummar yRecord * — pointer to alink time summary
structure defined in Section 8.5.8.

Return Value: Return nonzero if the header was successfully written, or zero if not.

8.4.26 OutReadLinkTimeSummary
Sgnature. int Qut ReadLi nkTi neSunmary (FILE * file,

TRANSIMS-LANL-1.0 — Files— May 1999 Page 122
LA-UR —99-2579

TQut Li nkTi neSunmmar yRecord * record)
Description: Read arecord from alink time summary table.

Argument: fil e — pointer to a Fl LE stream object.
recor d — pointer to alink time summary structure defined in Section 8.5.8.

Return Value: Return nonzero if the record was successfully read, or zero if not.

8.4.27 OutWriteLinkTimeSummary

Sgnature. int Qut WiteLinkTi meSummary (FILE * file, const
TQut Li nkTi neSunmmar yRecord * record)

Description: Writearecord to a link time summary table.

Argument: fil e — pointer to a Fl LE stream object.
recor d — pointer to alink time summary structure defined in Section 8.5.8.

Return Value: Return nonzero if the record was successfully written, or zero if not.

8.4.28 OutReadLinkSpaceSummaryHeader

Sgnature: i nt Qut ReadLi nkSpaceSurmmar yHeader (FILE * file,
TQut Header * header, TQutLi nkSpaceSummaryRecord *
record)

Description: Read a header from alink space summary table.

Argument: fil e — pointer to a Fl LE stream object.
header — pointer to an output table header structure defined in Section 8.5.1.
recor d — pointer to alink space summary structure defined in Section 8.5.9.

Return Value: Return nonzero if the header was successfully read, or zero if not.

8.4.29 OutWriteLinkSpaceSummaryHeader

Sgnature: int QutWiteLi nkSpaceSunmaryHeader (FILE * file, const
TQut Header * header, TQutLi nkSpaceSumaryRecord * record)

Description: Write a header to a link space summary table.
Argument: fil e — pointer to a Fl LE stream object.
header — pointer to an output table header structure defined in Section 8.5.1.
recor d — pointer to alink space summary structure defined in Section 8.5.9.

Return Value: Return nonzero if the header was successfully written, or zero if not.

8.4.30 OutReadLinkSpaceSummary

Sgnature. int Qut ReadLi nkSpaceSummary (FILE * file,
TQut Li nkSpaceSumar yRecord * record)

TRANSIMS-LANL-1.0 — Files— May 1999 Page 123
LA-UR —99-2579

Description: Read arecord from alink space summary table.

Argument: fil e — pointer to a Fl LE stream object.
recor d — pointer to alink space summary structure defined in Section 8.5.9.

Return Value: Return nonzero if the record was successfully read, or zero if not.

8.4.31 OutWriteLinkSpaceSummary

Sgnature: int QutWiteLi nkSpaceSummary (FILE * file, const
TQut Li nkSpaceSummar yRecord * record)

Description: Writearecord to a link space summary table.

Argument: fil e — pointer to a Fl LE stream object.
recor d — pointer to alink space summary structure defined in Section 8.5.9.

Return Value: Return nonzero if the record was successfully written, or zero if not.

8.4.32 OutReadLinkVelocitySummaryHeader

Sgnature: i nt Qut ReadLi nkVel oci t ySunmar yHeader (FILE * file,
TQut Header * header, TQutLi nkVel ocitySumaryRecord *
record)

Description: Read a header from alink velocity summary table.

Ar gunent : fil e —pointer to aFl LE stream object.
header — pointer to an output table structure defined in Section 8.5.1.
TQut Li nkVel oci t ySummar yRecor d — pointer to alink velocity summary
structure defined in Section 8.5.10.

Return Value: Return nonzero if the header was successfully read, or zero if not.

8.4.33 OutWriteLinkVelocitySummaryHeader

Sgnature: int QutWiteLinkVel oci tySunmaryHeader (FILE * file, const
TQut Header * head, TQutLi nkVel ocitySummaryRecord *
record)

Description: Write a header to a link velocity summary table.

Argument: fil e — pointer to a Fl LE stream object.
header — pointer to an output table header structure defined in
Section 8.5.1.
recor d — pointer to alink velocity summary structure defined in
Section 8.5.10.

Return Value: Return nonzero if the header was successfully written, or zero if not.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 124
LA-UR —99-2579

8.4.34 OutReadLinkVelocitySummary

Sgnature. int Qut ReadLi nkVel ocitySummary (FILE * file,
TQut Li nkVel oci t ySunmar yRecord * record)

Description: Read arecord to alink velocity summary table.

Argument: fil e — pointer to a Fl LE stream object.
recor d — pointer to alink velocity summary structure defined in
Section 8.5.10.

Return Value: Return nonzero if the record was successfully read, or zero if not.

8.4.35 OutWriteLinkVelocitySummary

Sgnature: int QutWiteLinkVelocitySummary (FILE * file, const
TQut Li nkVel oci t ySummar yRecord * record)

Description: Writearecord to a link velocity summary table.

Argument: fil e — pointer to a Fl LE stream object.
recor d — pointer to alink velocity summary structure defined in
Section 8.5.10.

Return Value: Return nonzero if the record was successfully written, or zero if not.

8.4.36 OutReadLinkEnergySummaryHeader

Sgnature: i nt Qut ReadLi nkEner gySunmar yHeader (FILE * file,
TQut Header * header, TQutLi nkEner gySummaryRecord *
record)

Description: Read a header to alink energy summary table.
Argument: fil e — pointer to a Fl LE stream object.
header — pointer to an output table header structure defined in Section 8.5.1.

recor d — pointer to alink energy summary structure defined in
Section 8.5.11.

Return Value: Return nonzero if the header was successfully read, or zero if not.

8.4.37 OutWriteLinkEnergySummaryHeader

Sgnature: int QutWiteLi nkEner gySunmar yHeader (FILE * file, const
TQut Header *header, TCQutLi nkEner gySummaryRecord * record)

Description: Write a header to alink energy summary table.

Argument: fil e — pointer to a Fl LE stream object.
header — pointer to an output table header structure defined in

TRANSIMS-LANL-1.0 — Files— May 1999 Page 125
LA-UR —99-2579

Section 8.5.1.

recor d —pointer to alink energy summary structure defined in Section 8.5.11.

Return Value: Return nonzero if the header was successfully written, or zero if not.

8.4.38 OutReadLinkEnergySummary

Sgnature. int Qut ReadLi nkEnergySunmary (FILE * file,
TQut Li nkEner gySummar yRecord * record)

Description: Read arecord to alink energy summary table.

Argument: fil e — pointer to a Fl LE stream object.
recor d — pointer to alink energy summary structure defined in
Section 8.5.11.

Return Value: Return nonzero if the record was successfully read, or zero if not.

8.4.39 OutWriteLinkEnergySummary

Sgnature: int QutWiteLinkEnergySunmary (FILE * file, const
TQut Li nkEner gySummar yRecord * record)

Description: Writearecord to alink energy summary table.
Argument: fil e — pointer to a Fl LE stream object.

recor d — pointer to alink energy summary structure defined in
Section 8.5.11.

Return Value: Return nonzero if the record was successfully written, or zero if not.

8.5 Data Structures

8.5.1 TOutHeader

This structureis used for the output table header.
t ypedef struct

/** The field names. **/
I NT8 fFields[512];

} TQut Header ;

8.5.2 TOutNodeSpecificationRecord

This structureis used for output node specification table records.
t ypedef struct

{
/** The NAME field. **/

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 126

I NT8 f Name[100] ;

/** The NCDE field. **/
I NT32 f Node;

} TQut NodeSpeci fi cati onRecord;

8.5.3 TOutLinkSpecificationRecord

This structureis used for output link specification table records.

t ypedef struct

{
/** The NAME field. **/
I NT8 f Name[100] ;

/[** The LINK field. **/
I NT32 fLink;

} TCut Li nkSpeci fi cati onRecord;

8.5.4 TOutTravelerEventRecord

This structureis used for traveer event records.

typedef structure

{
[** The TIME field. **/
REAL64 f Ti ne;

/** The TRAVELER field. **/
I NT32 fTravel er;

/[** The TRIP field. **/
I NT32 fTrip;

/[** The LEG field. **/
| NT32 fLeg;

/** The VEH CLE field. **/
I NT32 f Vehi cl g;

[** The VEHTYPE field. **/
I NT32 f Veht ype;

/** The VSUBTYPE field. **/
| NT32 fVsubt ype;

/** The ROQUTE field. **/
I NT32 f Rout e;

[** The STOPS field. **/
I NT32 f St ops;

/** The YIELDS field. **/
I NT32 fYields;

[** The SIGNALS field. **/

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 127

I NT32 fSignal s;

/** The TURN field. **/
I NT32 f Turn;

/** The STOPPED field. **/
REAL64 f St opped,;

/** the ACCELS field. **/
REAL64 f Accel s;

/** The TIMESUM field. **/
REAL64 f Ti nesum

[** The DI STANCESUM field. **/
REAL64 f Di st ancesum

/** The USER field. **/
I NT32 f User;

[** The Anomaly field. **/
I NT32 f Anomal y;

[** The STATUS field. **/
| NT32 f St atus;

/** The LOCATION field. **/
I NT32 f Locati on;

/** Private: The i/o formats. **/
INT8 fFormat[2] [85];

/** Private: The pointers to the data.

I NT32 f O fsets[20];

} TQut Tr avel er Event Recor d;

8.5.5 TOutVehicleEvolutionRecord

This structureis used for vehicle evolution records.

t ypedef struct

{
[** The TIME field. **/
REAL64 f Ti ne;

/** The DRIVER field. **/
I NT32 fDriver;

/** The VEH CLE field. **/
I NT32 f Vehicl g;

[** The VEHTYPE field. **/
I NT32 f Veht ype;

/[** The LINK field. **/
I NT32 fLink;

/** The NCDE field. **/

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 128

I NT32 f Node. ;

/** The LANE field. **/
| NT32 f Lane;

/** The DI STANCE field. **/
REAL64 f Di st ance;

[** The VELCCITY field. **/
REAL64 f Vel ocity;

/** The ACCELER field. **/
REAL64 f Accel er;

/** The PASSENGERS field. **/
| NT32 f Passengers;

/** The EASTING field. **/
REAL64 f Easti ng;

/[** The NORTHI NG field. **/
REAL64 f Nort hi ng;

/** The ELEVATION field. **/
REAL64 f El evati on;

[** The AZIMJTH field. **/
REAL64 f Azi nut h;

/** The USER field. **/
I NT32 f User;

/** Private: The i/o formats. **/
INT8 fFormat[2] [72];

/** Private: The pointers to the data. **/
INT32 fOFf sets[16];

} TQut Vehi cl eEvol uti onRecord;

8.5.6 TOutlIntersectionEvolutionRecord

This structure is used for intersection evolution records.
t ypedef struct

{
[** The TIME field. **/
REAL64 f Ti ne;

/** The VEH CLE field. **/
I NT32 f Vehicl g;

/** The NCDE field. **/
I NT32 f Node;

/[** The LINK field. **/
I NT32 fLink;

/[** The LANE field. **/

TRANSIMS-LANL-1.0 — Files— May 1999 Page 129
LA-UR —99-2579

| NT32 f Lane;

/** The Q NDEX field. **/
I NT32 f Q ndex;

/** Private: The i/o formats. **/
INT8 fFormat[2] [25];

/** Private: The pointer to the data. **/
INT32 fOFfsets [6];

} TCQutlntersectionEvol uti onRecord;

8.5.7 TOutTrafficControlEvolutionRecord:

This structureis used for traffic control evolution records.
t ypedef struct

{
[** The TIME field. **/
REAL64 f Ti ne;

/** The NCDE field. **/
I NT32 f Node;

/[** The LINK field. **/
I NT32 fLink;

/** The LANE field. **/
| NT32 f Lane;

[** The SIGNAL field. **/
I NT32 f Signal;

/** Private: The i/o formats. **/
INT8 fFormat [2] [21];

/** Private: The pointers to the data. **/
INT32 fOFf sets[5];

} TQut TrafficControl Evol uti onRecord;

8.5.8 TOutLinkTimeSummaryRecord

This structureis used for link time summary records.
t ypedef struct

{
[** The TIME field. **/
REAL64 f Ti ne;

/[** The LINK field. **/
I NT32 fLink;

/** The NCDE field. **/
I NT32 f Node;

/** The LANE field. **/

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 130

| NT32 f Lane;

/** The TURN field. **/
I NT32 f Turn;

/** The COUNT field. **/
I NT32 f Count;

[** The SUM field. **/
REAL64 f Sum

/** The SUVBQUARES field. **/
REAL64 f Sunsquar es;

[** The VCOUNT field. **/
I NT32 fVCount;

[** The VSUM field. **/
REAL64 f VSum

/** The VSUVBQUARES field. **/
REAL64 f VSunsquar es;

/** Private: The i/o formats. **/
INT8 fFormat[2] [49];

/** Private: The pointers to the data. **/
INT32 fOFf sets[11];

} TCut Li nkTi meSummar yRecor d;

8.5.9 TOutLinkSpaceSummaryRecord

This structureis used for link space summary records.
t ypedef struct

{
[** The TIME field. **/
REAL64 f Ti ne;

/[** The LINK field. **/
I NT32 fLink;

/** The NCDE field. **/
I NT32 f Node;

/** The LANE field. **/
| NT32 f Lane;

/** The DI STANCE field. **/
REAL64 f Di st ance;

/** The COUNT field. **/
I NT32 f Count;

[** The SUM field. **/
REAL64 f Sum

[** The SUMBQUARES field. **/

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 131

REAL64 f Sunsquar es;

/** Private: The i/o formats. **/
INT8 fFormat[2] [36];

/** Private: The pointers to the data. **/
INT32 fOFf sets[8];

} TCut Li nkSpaceSunmar yRecor d;

8.5.10 TOutLinkVelocitySummaryRecord

This structureis used for link velocity summary records.

/** Maxi mum al | oned nunber of bins in a histogram **/
#def i ne H STOGRAM MAX_BI NS 100

[** Structure for link velocity sunmary records. **/
t ypedef struct

[** The TIME field. **/

REAL64 f Ti ne;

/[** The LINK field. **/
I NT32 fLink;

/** The NCDE field. **/
I NT32 f Node.

/** The DI STANCE field. **/
READ64 f Di st ance;

[** The COUNT fields. **/
I NT32 f Count [H STOGRAM NAX_ BI NS] ;

/** The nunber of bins in the histogram **/
I NT32 f Nunber Bi ns;

/** Private: The i/o formats. **/
INT8 fFormat[2] [18 + 4 * H STOGRAM MAX BI NS ;

/** Private: The pointers to the data. **/
INT32 fOFfsets[4 + H STOGRAM MAX_BI NS] ;

} TCut Li nkVel oci t ySummar yRecor d;

8.5.11 TOutLinkEnergySummaryRecord

This structureis used for link energy summary records.

/** Maxi mum al | oned nunber of bins in a histogram **/
#def i ne H STOGRAM MAX_BI NS_100

[** Structure for |link energy summary records. **/
t ypedef struct

{
[** The TIME field. **/

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 132

REAL64 f Ti ne;

/[** The LINK field. **/
I NT32 fLink;

/** The NCDE field. **/
I NT32 f Node;

/** The ENERGY fields. **/
I NT32 f Ener gy[H STOGRAM MAX_BI NS] ;

/** The nunber of bins in the histogram **/
I NT32 f Nunber Bi ns;

/** Private: The i/o formats. **/
INT8 fFormat[2] [13 + 3 * H STOGRAM MAX BI NS ;

/** Private: The pointers to the data. **/
INT32 fOFfsets[3 + H STOGRAM MAX_BI NS] ;

} TCut Li nkEner gySummar yRecor d;

8.6 Utility Programs

8.6.1 InterpretStatus

Inter pretStatus displays the STATUS fidd in the traveler event output data as a bit pattern for
easier interpretation.

Usage I nterpretStatus <event file>

Inter pretStatus reads the event file and writes the bit patterns representing the STATUS fidld to
standard output. The output may be redirected to afileif preferred.

8.6.2 TestSimOutput

TestSmOutput tests much of the functionality of the simulation output representation. Its primary
useis for regression testing when the output representation is modified.

Usage: Test Si nut put <configuration fil e>

TestSmOutput writes output to standard out. Thefinal line should be* No failures occurred.”

= TestSmOutput is not availablein thisrelease.

8.6.3 CompareDensity

CompareDensity allows vehicle evolution data and link density summary data to be compared for
verification of consistency. Comparison of new output with previously recorded output allows a
limited form of regression testing of simulation output when the simulation is modified.

Usage: Conpar eDensity <configuration file>

TRANSIMS-LANL-1.0 — Files— May 1999 Page 133
LA-UR —99-2579

CompareDensity writes records that are not within the tolerated difference to standard output.

/= CompareDensity is not availablein this release.

8.6.4 CompareVelocity

CompareVel ocity allows vehicle evolution data and link velocity summary data to be compared for
verification of consistency. Comparison of new output with previously recorded output allows a
limited form of regression testing of simulation output when the simulation is modified.

Usage: Conpar eVel ocity <configuration file>

CompareVe ocity writes records that are not within the tolerated difference to standard output.

M CompareVelocity isnot availablein this release.

8.6.5 DumpOutput

DumpOutput may be used to merge and filter binary output collected on individual computational
nodes and convert it to ASCII format. Binary data collection is still available in the output
representation, but has been largely superceded by the ASCI| data collection capability provided
by the paralld toolbox. DumpOutput is still available, but is now sddom used.

M DumpOutput is not availablein this release.

8.6.6 SetupOutput

The SetupOutput script copies a set of empty and test output tables into a specified directory. It
takes the name of the directory asits only argument.

8.6.7 CleanupOutput

The CleanupOutput script removes a set of tables created by SetupOutput. 1t takes the name of
the directory as its argument.

8.7 Files

Table75: Simulation output library files.

Type File Name Description

Binary Files libTIO.a TRANSIMS Interfaces library

Source Files outio.c Defines simulation output data structures and interface functions
outio.h Simulation output interface functions source file

Utilities InterpretStatus Interprets event status field
SetupOutput Creates empty and test output files
CleanupOutput Removes empty and test output files

Example Files | Test*.thl Tests output tables
TestConfiguration.tbl | Configuration file for TestS mOutput

TRANSIMS-LANL-1.0 — Files— May 1999 Page 134
LA-UR —99-2579

8.8 Configuration Keys

In the simulation output keywords, the trailing n must be replaced by an integer, beginning with 1
for thefirst set of output of each type (snapshot, event, and summary). If more than one set of
output is desired for a particular type, the second set of keywords ends with n=2; the third set uses
n=3, eic. Thereisno restriction to the number of output data sets of each type that may be

requested.

The keywords in Table 76 pertain to the snapshot (evolution) type of output.

Table76: Configuration keysfor snapshot output.

Key Description

OUT_SNAPSHOT NAME n

file name for snapshot output

OUT_SNAPSHOT_TYPE_n

types of snapshot output to collect (separated by semicolons)
permissible values are VEHICLE; INTERSECTION;
SIGNAL

OUT_SNAPSHOT_BEGIN_TIME_n

first time (in seconds from the midnight before simulation
start) at which to collect data

OUT_SNAPSHOT_END_TIME_n

last time (in seconds from the midnight before simulation
start) at which to collect data

OUT_SNAPSHOT_TIME_STEP n

frequency (in seconds) at which to report data (i.e., writeit
to disk)

OUT_SNAPSHOT_EASTING_MIN_n

minimum easting (in meters) for which to report data
(currently unused)

OUT_SNAPSHOT_EASTING_MAX_n

maximum easting (in meters) for which to report data
(currently unused)

OUT_SNAPSHOT_NORTHING_MIN_n

minimum northing (in meters) for which to report data
(currently unused)

OUT_SNAPSHOT_NORTHING_MAX_n

maximum northing (in meters) for which to report data
(currently unused)

OUT_SNAPSHOT_NODES n

path of the node specification file (fileis described in Table
72)

OUT_SNAPSHOT_LINKS n

path of thelink specification file (fileis described in Table
73)

OUT_SNAPSHOT_SUPPRESS n

list of fields (separated by semicolons) not to include in the
output file

OUT_SNAPSHOT_FILTER n

list of expressions (of theform FIELD OPERATOR
VALUE, and separated by semicolons) for filtering records;
(valid values for FIELD arefound in Table 65 through Table
67, and values for OPERATOR are found in Table 74)

TRANSIMS-LANL-1.0 — Files— May 1999

LA-UR —99-2579

Page 135

The keywords in Table 77 pertain to the event type of output.

Table77: Configuration keysfor event output.

Key Description

OUT EVENT NAME_n

file name for event output

OUT_EVENT_TYPE.n

types of event output to collect
permissible valueis TRAVELER

OUT_EVENT_BEGIN_TIME_n

first time (in seconds from the midnight before simulation start)
at which to collect data

OUT_EVENT_END_TIME_n

last time (in seconds from the midnight before simulation start)
at which to collect data

OUT_EVENT_EASTING_MIN_n

minimum easting (in meters) for which to report data (currently
unused)

OUT_EVENT_EASTING_MAX_n

maximum easting (in meters) for which to report data (currently
unused)

OUT_EVENT_NORTHING_MIN_n

minimum northing (in meters) for which to report data (currently
unused)

OUT_EVENT_NORTHING_MAX_n

maximum northing (in meters) for which to report data
(currently unused)

OUT_EVENT_SUPPRESS n

list of fields (separated by semicolons) not to include in the
output file

OUT_EVENT_FILTER n

list of expressions (of the form FIELDNAME OPERATOR
VALUE, and separated by semicolons) for filtering records;
(valid values for FIELD arefound in Table 63 and valid values
for OPERATOR arefound in Table 74)

TRANSIMS-LANL-1.0 — Files— May 1999 Page 136

LA-UR —99-2579

The keywords in Table 78 pertain to the summary type of output.

Table78: Configuration keysfor summary output.

Key Description

OUT_SUMMARY NAME n

file name for summary output

OUT_SUMMARY _TYPE_n

types of summary output to collect (separated by semicolons)
permissible values are DENSITY; TIME; VELOCITY;
ENERGY

OUT_SUMMARY_BEGIN_TIME_n

first time (in seconds from the midnight before simulation
start) at which to collect data

OUT_SUMMARY_END_TIME_n

last time (in seconds from the midnight before simulation
start) at which to collect data

OUT_SUMMARY_TIME_STEP n

frequency (in seconds) at which to report data (i.e., writeit
to disk)

OUT_SUMMARY_SAMPLE_TIME n

frequency (in seconds) at which to accumulate data

OUT_SUMMARY BOX_LENGTH_n

length of the boxes (in meters)

OUT_SUMMARY_EASTING MIN_n

minimum easting (in meters) for which to report data
(currently unused)

OUT_SUMMARY_EASTING_MAX_n

maximum easting (in meters) for which to report data
(currently unused)

OUT_SUMMARY_NORTHING_MIN_n

minimum northing (in meters) for which to report data
(currently unused)

OUT_SUMMARY_NORTHING_MAX_n

maximum northing (in meters) for which to report data
(currently unused)

OUT_SUMMARY_LINKS n

path of thelink specification file (fileis described in Table
73)

OUT_SUMMARY_SUPPRESS n

list of fields (separated by semicolons) not to include in the
output file

OUT_SUMMARY_FILTER n

list of expressions (of the form FIELDNAME OPERATOR
VALUE, and separated by semicolons) for filtering records;
(valid values for FIELD arefound in Table 68 and Table 69,
and valid values for OPERATOR arefound in Table 74)

OUT_SUMMARY_VELOCITY_BINS n

number of bins used to cover the range of the velocity
histogram

OUT_SUMMARY _VELOCITY MAX_n

maximum velocity in the velocity histogram

OUT_SUMMARY_ENERGY_BINS n

number of bins used to cover the range of the energy
histogram

OUT_SUMMARY_ENERGY_MAX_n

maximum energy in the energy histogram

TRANSIMS-LANL-1.0 — Files— May 1999

LA-UR —99-2579

Page 137

The keywords in Table 79 are used only by the CompareDensity and CompareVelocity programs.
Only thefirst of these keywords is used by CompareVe ocity.

Table79: Configuration keysfor theCompareDensity and CompareVelocity programs.

OUT_SUMMARY_SPACE_COUNT_TOLERANCE 1 difference tolerated between snapshot
and summary count data
OUT_SUMMARY_SPACE_SUM_TOLERANCE_1 difference tolerated between snapshot

and summary sum data
OUT_SUMMARY_SPACE_SUMSQUARES TOLERANCE_1 | difference tolerated between snapshot
and summary sum-of-squares data

TRANSIMS-LANL-1.0 — Files— May 1999 Page 138
LA-UR —99-2579

8.9 Examples

The example presented in this section uses the example network presented in Section 7.8. Table 80
presents a small set of plans that are simulated on the network.

Table80: Plan set.

Trip/Leg
Traveler 101,
Tripl, Legl

Plan

101 31110

24600 1002 2 1003 2
400 24600 1

101

6

300 0

8520 14141 8522 8521

Description
Traveler 10 drives auto 300 from parking 1002 to
parking 1003 via nodes 8520, 14141, 8522, 8521.

Travder 101,
Tripl, Leg?2

10131200

2500 1003 2 3002 3
120 25000 1

020

0

Traveler 101 walks from parking 1003 to transit stop
3002.

Travder 1,
Tripl, Legl

1101110

25200 1005 2 1006 2
300 25200 1

115

6

100 20

8525 8603 14340 8608

Traveler 1 drives bus 100 along bus route 20 from
parking 1005 to parking 1006 via nodes 8525, 8603,
14340, 8608.

Travder 101,
Trip1, Leg3

10131300

25200 3002 3 3005 3
300 25300 1

015

1

20

Traveler 101 rides bus from transit stop 3002 to transit
stop 3005 along bus route 20.

Travder 1,
Tripl, Leg?2

1101200

25500 1006 2 1006 2
0 25800 1

040

0

Traveler 1 has alayover activity at parking 1006 from
thetime of arrival until time 25800 seconds past
midnight.

Travder 101,
Tripl, Leg4

10131401

25500 3005 3 1006 2
30 25500 1

020

0

Traveler 101 walks from transit stop 3005 to parking
1006.

Travder 1,
Trip1, Leg3

1101301

25800 1006 2 1005 2
200 25800 1

115

6

100 21

8608 14340 8603 8525

Traveler 1 drives bus 100 along bus route 21 from
parking 1006 to parking 1005 via nodes 8608, 14340,
8603, 8525.

TRANSIMS-LANL-1.0 — Files— May 1999

LA-UR —99-2579

Page 139

Thefollowing is an excerpt of the simulation configuration file that pertains to the output collected.

directory for simulation output (all output for a sinmulation is witten to a
single directory)
QUT_DI RECTORY / home/ Ger shwi nout put 1/ kpb4j h

file nane for snapshot out put
OUT_SNAPSHOT_NAME_1 out put . test. evol

first tine (in seconds fromthe m dnight before simulation start) at which to
coll ect data
OUT_SNAPSHOT_BEG N_TI ME_1 24610

last tine (in seconds fromthe m dnight before simulation start) at which to
coll ect data
OUT_SNAPSHOT_END _TI ME_1 86400

frequency (in seconds) at which to report data (i.e., wite it to disk)
OUT_SNAPSHOT_TI ME_STEP_1 1

path of the node specification file
OUT_SNAPSHOT_NCDES_1 / home/ proj ects/transi ms/ dat abase/test/ Test _Qut
put _Node_Speci fication_Tabl e

path of the link specification file
OUT_SNAPSHOT_LI NKS_1 / home/ proj ect s/ transi ns/ dat abase/t est/ Test _Qut
put _Li nk_Specification_Table

file nane for event output
OUT_EVENT_NAME_1 out put . test. event

first tine (in seconds fromthe m dnight before simulation start) at which to
coll ect data
OUT_EVENT_BEG N_TI ME_1 0

last tine (in seconds fromthe m dnight before simulation start) at which to
coll ect data
OUT_EVENT_END_TI ME_1 86400

file nane for event output
OUT_SUMVARY_NAME_1 out put.test.sum

first tine (in seconds fromthe m dnight before simulation start) at which to
coll ect data
OUT_SUWMMVARY_BEG N_TI ME_1 24610

last tine (in seconds fromthe m dnight before simulation start) at which to
coll ect data
OUT_SUMVARY_END TI ME_1 86400

frequency (in seconds) at which to report data (i.e., wite it to disk)
OUT_SUMVARY_TI ME_STEP_1 900

frequency (in seconds) at which to accunulate data
OUT_SUMVARY_SAMPLE_TI ME_1 60

length of the boxes (in meters)
OUT_SUMVARY_BOX_LENGTH 1 150

path of the link specification file (file is described in Table 56)
OUT_SUMVARY_LI NKS_1 / home/ proj ect s/ transi ns/ dat abase/t est/ Test _Qut
put _Li nk_Specification_Table

TRANSIMS-LANL-1.0 — Files— May 1999 Page 140
LA-UR —99-2579

Table 81 (parts a and b) shows the traveler event output that was collected for an 1800-second

simulation.

Table8la: Traveler event output.

A [0 0 0 1 1002 - 1 0 16412 0 0
B [0 0 307. 5 1 1002 - 1 0 17156 0 0
cC [0 0 307. 5 1 1002 - 1 0 19716 0 0
D [0 0 135 1 12384 - 1 0 16778501 [0 0
E [0 0 694 1 12384 - 1 0 1286 0 0
F [0 0 2194 1 28800 - 1 1 1286 59 0
G [0 0 3194 1 11487 - 1 1 1286 59 0
H [0 0 5694 1 9705 - 1 2 1286 63 0
| 0 0 6499. 5 1 12407 - 1 2 1286 63 0
J 0 0 6499. 5 1 1003 - 1 2 18692 63 0
K [0 0 6499. 5 1 1003 - 1 2 16900 63 0
L 0 0 6499. 5 1 1003 - 1 2 16392 63 0
M [0 0 0 2 1003 - 1 0 16428 0 0
N [0 0 0 2 3002 20 0 32808 0 0
o [0 0 0 3 3002 20 0 32780 0 0
P [0 0 0 3 3002 20 0 45060 0 0
Q [0 0 0 1 1005 20 0 16412 0 0
R [0 0 0 1 1005 20 0 28676 0 0
S [0 0 0 1 1005 20 0 21252 0 0
T |0 0 0 1 1005 20 0 23812 0 0
U [0 0 0 1 1005 20 0 25860 0 0
v [0 15 1 3002 20 0 230661 0 0
W 0 7.5 3 3002 20 0 37636 0 0
X |0 0 7.5 3 3002 20 0 41220 0 0
Y |1 0 37. 5 1 3002 20 0 132357 0 0
Z 2 0 374. 5 1 2758 20 0 1286 0 0
AA 1 0 367 3 2758 20 0 262 0 0
BB [2 0 1374.5 1 2759 20 0 1286 0 0
CC |1 0 1367 3 2759 20 0 262 0 0
DD [21 0 4874. 5 1 2750 20 0 1286 1 0
EE [20 0 4867 3 2750 20 0 262 1 0
FF [21 0 5874. 5 1 2751 20 0 1286 1 1
GG |20 0 5867 3 2751 20 0 262 1 1
HH 21 0 6203 1 3005 20 0 230661 1 1
11 [20 0 6195. 5 3 3005 20 0 33284 1 1
JJ |20 0 6195. 5 3 3005 - 1 0 32776 1 1
KK [0 0 0 4 3005 - 1 0 32812 0 0
LL [21 0 6233 1 3005 20 0 132357 1 1
W 21 0 6233 1 2752 20 0 1286 1 1
NN 21 0 6225. 5 1 1006 20 0 18692 1 1
o0 |21 0 6225. 5 1 1006 20 0 16900 1 1
PP [21 0 6225. 5 1 1006 - 1 0 16392 1 1
QQ [0 0 0 2 1006 - 1 0 16428 0 0
RR [0 0 0 2 1006 - 1 0 802852 0 0
SS [0 0 0 2 1006 21 0 540708 0 0
TT |0 0 0 2 1006 21 0 16424 0 0
UJ [0 0 0 3 1006 21 0 16396 0 0
VV [0 0 0 3 1006 21 0 28676 0 0
MWV [0 0 0 3 1006 21 0 21252 0 0
XX |0 0 0 3 1006 21 0 23812 0 0
YY |0 0 0 3 1006 21 0 25860 0 0
ZZ |1 0 353. 5 3 2752 21 0 1286 0 0
IAAA 1 0 1353.5 3 2751 21 0 1286 2 0
BBB [1 0 4853. 5 3 2750 21 0 1286 3 1
CCC |1 0 5853. 5 3 2759 21 0 1286 4 1
DDD (1 0 6225. 5 3 2758 21 0 1286 4 1
EEE [1 0 6495. 5 3 1005 21 0 18692 4 1
FFF [1 0 6495. 5 3 1005 21 0 16900 4 1
GGG |1 0 6495. 5 3 1005 21 0 16408 4 1

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 141

Table80b: Traveler output data.
TIME TIMESUM TRAVELER TRI P TURN USER VEHI CLE VEHTYPE VSUBTYPE YI ELDS

A [24610 [10 101 1 0 3 0 0 0 0
B [24610 [10 101 1 0 3 300 1 0 0
C [24610 [10 101 1 0 3 300 1 0 0
D [24610 [0 101 1 0 3 300 1 0 0
E [24638 |28 101 1 0 3 300 1 0 0
F 24780 |170 101 1 0 3 300 1 0 1
G [24827 |217 101 1 - 1 3 300 1 0 1
H [24947 [337 101 1 - 1 3 300 1 0 1
| 24986 |376 101 1 - 1 3 300 1 0 1
J 24986 |376 101 1 - 1 3 300 1 0 1
K [24986 [376 101 1 - 1 3 300 1 0 1
L 24986 |376 101 1 - 1 3 0 0 0 1
M [24986 [0 101 1 0 3 0 0 0 0
N [25106 [0 101 1 0 3 0 0 0 0
O 25106 [0 101 1 0 3 0 0 0 0
P [25106 [0 101 1 0 3 0 0 0 0
Q 25200 [0 1 1 0 10 0 0 0 0
R [25201 [0 1 1 0 10 0 0 0 0
S [25201 [0 1 1 0 10 100 5 0 0
T 25201 |0 1 1 0 10 100 5 0 0
U [25201 [0 1 1 0 10 100 5 0 0
vV [25203 [2 1 1 0 10 100 5 0 0
W [25209 [103 101 1 0 3 100 5 0 0
X |25209 |103 101 1 0 3 100 5 0 0
Y |25209 |8 1 1 0 10 100 5 0 0
Z 25231 |30 1 1 0 10 100 5 0 0
IAA [25231 [125 101 1 0 3 100 5 0 0
BB [25304 [103 1 1 0 10 100 5 0 0
CC [25304 |198 101 1 0 3 100 5 0 0
DD [25612 [411 1 1 0 10 100 5 0 0
EE [25612 [506 101 1 0 3 100 5 0 0
FF [25684 (483 1 1 0 10 100 5 0 0
GG [25684 [578 101 1 0 3 100 5 0 0
HH [25708 [507 1 1 0 10 100 5 0 0
11 [25712 [606 101 1 0 3 100 5 0 0
JJ 25712 |606 101 1 0 3 0 0 0 0
KK [25712 [0 101 1 0 3 0 0 0 0
LL [25712 [511 1 1 0 10 100 5 0 0
WM [25712 [511 1 1 0 10 100 5 0 0
NN [25712 [511 1 1 0 10 100 5 0 0
OO [25712 [511 1 1 0 10 100 5 0 0
PP [25712 [511 1 1 0 10 0 0 0 0
QQ [25712 [0 1 1 0 10 0 0 0 0
RR [25712 [0 1 1 0 10 0 0 0 0
SS [25712 [0 1 1 0 10 0 0 0 0
TT 25712 |0 1 1 0 10 0 0 0 0
UJU [25712 [0 1 1 0 10 0 0 0 0
IVV [25800 [0 1 1 0 10 0 0 0 0
MW [25800 [0 1 1 0 10 100 5 0 0
XX |25800 |0 1 1 0 10 100 5 0 0
YY 25800 |0 1 1 0 10 100 5 0 0
ZZ 125823 |23 1 1 0 10 100 5 0 0
IAAA [25897 (97 1 1 0 10 100 5 0 0
BBB [26153 [353 1 1 0 10 100 5 0 0
CCC [26225 425 1 1 0 10 100 5 0 0
DDD {26250 ({450 1 1 0 10 100 5 0 0
EEE [26250 ({450 1 1 0 10 100 5 0 0
FFF [26250 ({450 1 1 0 10 100 5 0 0
GGG [26250 1450 1 1 0 10 0 0 0 0

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 142

Table 82 (parts a and b) shows thefirst 30 seconds of vehicle snapshot data collected.

Table82a: First 30 seconds of vehicle snapshot data.

AZIMUTH DISTANCE DRIVER EASTING ELEVATION LANE LINK
A 90 442.5 101 3005.25 1000 2 12384
B 90 465 101 3005.25 1000 2 12384
C 90 480 101 3005.25 1000 2 12384
D 90 502.5 101 3005.25 1000 2 12384
E 90 517.5 101 3005.25 999.99994 2 12384
F 90 540 101 3005.25 1000 2 12384
G 90 562.5 101 3005.25 1000.0001 2 12384
H 90 577.5 101 3005.25 1000 2 12384
| 90 600 101 3005.25 1000 2 12384
J 90 622.5 101 3005.25 1000 2 12384
K 90 645 101 3005.25 1000 2 12384
L 90 667.5 101 3005.25 1000 2 12384
M 90 690 101 3005.25 1000 2 12384
N 90 712.5 101 3005.25 1000 2 12384
O 90 735 101 3005.25 1000 2 12384
P 90 750 101 3005.25 1000 2 12384
Q 90 765 101 3005.25 1000 2 12384
R 90 787.5 101 3005.25 1000 2 12384
S 90 802.5 101 3005.25 1000 2 12384
T 90 825 101 3005.25 1000 2 12384
U 90 847.5 101 3005.25 1000 2 12384
\ 90 862.5 101 3005.25 1000 2 12384
W [90 885 101 3005.25 1000.0001 2 12384
X 90 900 101 3005.25 1000 2 12384
Y 90 922.5 101 3005.25 1000 2 12384
Z 90 937.5 101 3005.25 1000 2 12384
AA [90 960 101 3005.25 1000 2 12384
BB |90 982.5 101 3005.25 1000 2 12384
CC |90 15 101 3005.25 1000 2 28800
DD |90 30 101 3005.25 1000 2 28800
EE |90 52.5 101 3005.25 1000 2 28800

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 143

Table 81b: First 30 seconds of vehicle snapshot data.
NODE NORTHING PASSENGERS TIME VEHICLE VEHTYPE VELOCITY

A 14136 | 19485 0 24610 | 300 1 15
B 14136 | 1971 0 24611 | 300 1 22.5
C 14136 | 1986 0 24612 | 300 1 15
D 14136 | 2008.5 0 24613 | 300 1 22.5
E 14136 | 2023.4999 0 24614 | 300 1 15
F 14136 | 2046 0 24615 | 300 1 22.5
G 14136 | 2068.5 0 24616 | 300 1 22.5
H 14136 | 2083.5 0 24617 | 300 1 15
| 14136 | 2106 0 24618 | 300 1 22.5
J 14136 | 21285 0 24619 | 300 1 22.5
K 14136 | 2151 0 24620 | 300 1 22.5
L 14136 | 21735 0 24621 | 300 1 22.5
M 14136 | 2196 0 24622 | 300 1 22.5
N 14136 | 22185 0 24623 | 300 1 22.5
O 14136 | 2241 0 24624 | 300 1 22.5
P 14136 | 2256 0 24625 | 300 1 15
Q 14136 | 2271 0 24626 | 300 1 15
R 14136 | 2293.5 0 24627 | 300 1 22.5
S 14136 | 2308.5 0 24628 | 300 1 15
T 14136 | 2331 0 24629 | 300 1 22.5
U 14136 | 23535 0 24630 | 300 1 22.5
\ 14136 | 2368.5 0 24631 | 300 1 15
W [14136 | 2391 0 24632 | 300 1 22.5
X 14136 | 2406 0 24633 | 300 1 15
Y 14136 | 24285 0 24634 | 300 1 22.5
Z 14136 | 24435 0 24635 | 300 1 15
AA [14136 | 2466 0 24636 | 300 1 22.5
BB |14136 | 2488.5 0 24637 | 300 1 22.5
CC |8520 2515 0 24638 | 300 1 22.5
DD | 8520 2530 0 24639 | 300 1 15
EE | 8520 2552.5 0 24640 | 300 1 22.5

Table 83 shows the intersection snapshot data collected during the entire simulation.

Table83: Intersection snapshot data.

LANE LINK NODE QINDEX TIME VEHICLE

28800 |14141

2

1

24780 | 300

1

9705

8521

1

24947 | 300

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 144

Table 84 shows the signal snapshot data collected during thefirst second of the simulation.
Table84: Signal snapshot data.

LANE LINK NODE SIGNAL TIME

1 9704 | 8521 5 24610
2 9704 | 8521 5 24610
1 9705 | 8521 3 24610
1 12407 | 8521 5 24610
2 12407 | 8521 5 24610
3 12407 | 8521 3 24610
1 9706 | 8521 3 24610
1 11487 14141 |3 24610
2 11487 14141 |3 24610
3 11487 14141 |3 24610
4 11487 14141 |3 24610
5 11487 14141 |3 24610
6 11487 14141 |6 24610
1 11486 |14141 |5 24610
2 11486 |14141 |5 24610
3 11486 |14141 |5 24610
1 11495 14141 |3 24610
2 11495 14141 |3 24610
3 11495 14141 |3 24610
4 11495 14141 |3 24610
5 11495 14141 |3 24610
6 11495 |14141 |7 24610
1 28800 14141 |3 24610
2 28800 14141 |3 24610
3 28800 14141 |5 24610
4 28800 14141 |5 24610
5 28800 14141 |5 24610
6 28800 14141 |6 24610

TRANSIMS-LANL-1.0 — Files— May 1999

LA-UR —99-2579

Page 145

Table 85 shows the travel time summary data collected every 15 minutes.

Table85: Travel time summary data.

COUNT LANE LINK NODE SUM SUMSQUARES TIME TURN VCOUNT VSUM VSUMSQUARES

1 1 11487 (14141 47 |2209 25510 [-1 0 0 0
1 1 9705 [8522 120 14400 25510 [-1 0 0 0
1 2 28800 (8520 |142 20164 25510 [-1 0 0 0
1 2 2759 [8525 |73 5329 25510 [0 0 0 0
0 2 2759 [8525 |0 0 26410 [0 0 0 0
1 1 2759 [8603 |72 |5184 26410 [0 0 0 0
1 2 2751 (14340 |72 |5184 26410 [0 0 0 0
1 1 2751 (8608 |74 |5476 26410 [0 0 0 0
0 1 11487 (14141 |0 0 26410 [-1 0 0 0
1 2 2750 [8603 |308 94864 26410 [0 0 0 0
1 1 2750 [14340 |256 65536 26410 [0 0 0 0
0 1 9705 (8522 |0 0 26410 [-1 0 0 0
0 2 28800 (8520 |0 0 26410 |1 0 0 0

TRANSIMS-LANL-1.0 — Files— May 1999

LA-UR —99-2579

Page 146

Table 86 shows the link density summary table that was collected for onelink at the first summary

collection time.

Table86: Link density summary table.

COUNT DISTANCE LANE LINK NODE SUM SUMSQUARES TIME
0 975 1 2759 | 8525 0 0 25510
0 975 2 2759 | 8525 0 0 25510
0 975 3 2759 | 8525 0 0 25510
0 825 1 2759 | 8525 0 0 25510
0 825 2 2759 | 8525 0 0 25510
0 825 3 2759 | 8525 0 0 25510
0 675 1 2759 | 8525 0 0 25510
0 675 2 2759 | 8525 0 0 25510
0 675 3 2759 | 8525 0 0 25510
0 525 1 2759 | 8525 0 0 25510
1 525 2 2759 | 8525 7. 56.25 25510
0 525 3 2759 | 8525 0 0 25510
0 375 1 2759 | 8525 0 0 25510
0 375 2 2759 | 8525 0 0 25510
0 375 3 2759 | 8525 0 0 25510
0 225 1 2759 | 8525 0 0 25510
0 225 2 2759 | 8525 0 0 25510
0 225 3 2759 | 8525 0 0 25510
0 75 1 2759 | 8525 0 0 25510
0 75 2 2759 | 8525 0 0 25510
0 75 3 2759 | 8525 0 0 25510
0 975 1 2759 | 8603 0 0 25510
0 975 2 2759 | 8603 0 0 25510
0 825 1 2759 | 8603 0 0 25510
0 825 2 2759 | 8603 0 0 25510
0 675 1 2759 | 8603 0 0 25510
0 675 2 2759 | 8603 0 0 25510
0 525 1 2759 | 8603 0 0 25510
0 525 2 2759 | 8603 0 0 25510
0 375 1 2759 | 8603 0 0 25510
0 375 2 2759 | 8603 0 0 25510
0 225 1 2759 | 8603 0 0 25510
0 225 2 2759 | 8603 0 0 25510
0 75 1 2759 | 8603 0 0 25510
0 75 2 2759 | 8603 0 0 25510

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 147

Table 87 shows the link velocity summary data that were collected for onelink at the first
summary collection time.

Table87: Link velocity summary data.

DI STANCE
0 0 0 0 0 0 150 2759 |8525 |25510
0 0 0 0 0 0 300 2759 |8525 |25510
0 0 0 0 0 0 450 2759 |8525 |25510
0 0 1 0 0 0 600 2759 |8525 |25510
0 0 0 0 0 0 750 2759 |8525 |25510
0 0 0 0 0 0 900 2759 |8525 |25510
0 0 0 0 0 0 975 2759 |8525 |25510
0 0 0 0 0 0 150 2759 |8603 | 25510
0 0 0 0 0 0 300 2759 |8603 |25510
0 0 0 0 0 0 450 2759 |8603 |25510
0 0 0 0 0 0 600 2759 |8603 |25510
0 0 0 0 0 0 750 2759 |8603 | 25510
0 0 0 0 0 0 900 2759 |8603 |25510
0 0 0 0 0 0 975 2759 |8603 |25510

Table 88 shows the link energy summary data that were collected at the first summary collection
time.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 148
LA-UR —99-2579

Table88: Link energy summary data.

ENERGYO ENERGY1 ENERGY10 ENERGY11 ENERGY12 ENERGY13 ENERGY14 ENERGY2 ENERGY3 ENERGY4 ENERGY5 ENERGY6 ENERGY7 ENERGY8 ENERGY9 LI NK NCDE

o
o
o
o

o

o

o

o

o

2757

8606

TI ME
25510

2757

8524

25510

2758

8524

25510

2758

8525

25510

2759

8525

25510

2759

8603

25510

9704

8521

25510

9704

8523

25510

9706

8521

25510

9706

8524

25510

12384

14136

25510

12384

8520

25510

12407

8521

25510

12407

14136

25510

28804

14136

25510

28804

8525

25510

2751

14340

25510

2751

8608

25510

2752

8608

25510

2752

14142

25510

2753

14142

25510

2753

8610

25510

2754

8600

25510

2754

8522

25510

2755

8610

25510

2755

8600

25510

11486

14141

25510

11486

14142

25510

11487

8522

25510

11487

14141

25510

11495

14141

25510

11495

14340

25510

2750

8603

25510

2750

14340

25510

9705

8521

25510

9705

8522

25510

28800

8520

25510

28800

14141

25510

2756

8600

25510

FHEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE I EEEEEEEEEE
FHEE
FHEEE

FEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
FHEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
FHEE
FHEE

FHEE

FHEEE

FEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

FHEE

FEE

FHEEE

FHEE

FHEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

2756

8606

25510

TRANSIMS-LANL-1.0 - Files- May 1999
LA-UR — 99-xxx

Page 149

9. EMISSIONS ESTIMATOR

The TRANSIMS Emission Estimator moduleis designed to calculate emissions in 30-meter
segments along a link for chosen time periods (normally 15 minutes). It gives estimates of tailpipe
emissions of Nitrogen Oxides (NO,), Carbon Monoxide (CO), and hydrocarbons from light-duty
vehicles. It also gives fue-consumption that can be used to calculate emissions of Carbon Dioxide
(COy).

9.1 Terms

Link A portion of a highway or street with lanes going in a single direction
between intersections.

Light-duty Vehicles Cars, sport-utility vehicles, and small trucks.

Nitrogen-Oxides Nitric Oxide and Nitrogen Dioxides.

Soak Time The length of time an engine has been off before the current trip began.
Vehicle Flux The product of the density of vehicles by their speeds

9.2 File Format

This section describes the file formats of each of the five input files for the Light-Duty Tailpipe
Vehicle submodule and the two output files that it produces. The file names are defined in the code
but may be changed using the emissions configuration keys. See Volume 2—Modules for an
explanation of those keys.

9.2.1 readca.out

Thefile Readca.out contains the link velocity summary data produced by the microsimulation
described in Section 8.2.7 and reformatted for input into the Emissions Estimator.. The
transformation may be performed by using the readca program described in Section 9.3. Thisfile
isaninput filefor the Light-Duty Tailpipe submodule. Thefirst fiveitems described in Table 89
(NV through LENGTH) appear in asingle record, followed by NV records containing the six
COUNT fiddsin order in each record. This sequence is repeated for each LINK, NODE, and
TIME step inthe original file.

TRANSIMS-LANL-1.0 - Files- May 1999 Page 150
LA-UR — 99-xxx

Table 89:

Link velocity fields in readca.out (assuming the microsimulation was run with

OUT_SUMMARY_VELOCITY_BINS st to 6).

Field Interpretation

NV Number of velocity records for this link, equivalent to the number of boxes that partition the
link.

TIME Current time (seconds from midnight).

LINK Link 1D being reported.

NODE Node ID from which the vehicles were traveling away.

LENGTH | Length of box.

COUNTO | Number of vehicles with velocities in therange [0, 7.5).

COUNT1 | Number of vehicles with velocities in therange [7.5, 15).

COUNT2 | Number of vehicles with velocities in therange [15, 22.5).

COUNT3 | Number of vehicles with velocities in the range [22.5, 30).

COUNT4 | Number of vehicles with velocities in the range [30, 37.5).

COUNT5 | Number of vehicles with velocities in the range [37.5, infinity).

9.2.2 ARRAY.INP

Thefile ARRAY.INP is used in conjunction with array.out and contains parameters describing the
number of records and increments used in array.out. Several fields are unused by the Light-Duty
Tailpipe submodule.

Table90: Fieldsin ARRAY.INP.

Field Interpretation

T0 Time since engine start; not used.

RGRADEQ Representative minimum grade; not used.

DRGRADE Spacing in grade arrays; presently not used.

VOARRAY Representative speed for the lowest speed index (mph); not used.
DVARRAY Speed bin size (mph).

AOARRAY Accedleration for lowest acceleration index (feet/sec).

DACCARAY | Accderation bin size (feet/sec).

NGRADE Number of grades in the emission arrays; not used.

NVARRY Number of velocity bins in the emission arrays.

NAARRAY Number of acceleration bins in the emission arrays.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 151

LA-UR —99-2579

9.2.3 array.out

Thefilearray.out gives the composite vehicle emissions in 2-mph speed bins and 1.5 feet/second
accderation bins. Thisfileis an input filefor the Light-Duty Tailpipe submodule. The data in this
fileisfor the case when thereis no grade in the roadway. Thefirst two lines of the file contain
header information that isignored. Only the data fields are described in Table 91.

Table91: Composite vehicle emissionsfields.

Field Interpretation

VARRAY Representative speed (mph) for emissions calculation; not used.
ACARRAY | Representative acceleration for emissions calculation; not used.
HCTIK Hydrocarbon tailpipe emission rate (grams/sec).

COTIXK Carbon monoxide tail pipe emission rate (grams/sec).

NOXTIIK Nitrogen oxides tailpipe emission rate (grams/sec).

FECON Fue consumption rate (grams/sec).

9.2.4 wcemratios

Thefilewcemratios is an input for the Light-Duty Tailpipe submodule that contains ratios of cold
emissions to hot engine emissions. It contains eight records, one for each of seven groupings based
on integrated velocity-accd eration product, and an additional grouping for engines that have been
fully warmed-up. Thefirst grouping has a soak time of 60 minutes, and the groupings appear in
order from lowest integrated velocity-acceleration product to highest. The values are a multiplier
that represents the ratio of emissions for vehicles beginning a link in the group to the emissions of a
vehicle with the same driving pattern and a fully warmed up engine and catalyst.

Table92: Fiddsinwcemratios.

Field Interpretation

HCR Multiplier for hydrocarbon emissions.
COR Multiplier for carbon monoxide emissions.
XNOXR | Multiplier for nitrogen oxides emissions.
FCR Multiplier for fuel consumption.

9.2.5 vehcold.dis

Thefile vehcold.disis aninput file for the Light-Duty Tailpipe submodule that is used in
conjunction with weemratios. It contains the distribution of vehicles entering the link stratified by
the time integrated, vel ocity-acced eration product and by the time the engine was idle before the
start of the current trip. Note that negative accelerations areignored in the calculation of the time-
integrated, velocity-acceleration products. This distribution is used to determine what cold/warm
emission ratios should be used.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 152
LA-UR —99-2579

Table93: Fiddsinvehcold.dis.

Field Interpretation

VCOLD1 | Fraction of the vehicles entering the link that have had time-integrated, velocity-acceleration
products in the range of 0-18 cells squared per second squared after being idle for an hour or
more; 18 cells squared per second cubed is the typical amount for a vehicleto accelerate to
speed on an arterial from a stop; a cell is 7.5 meters.

VCOLD2 | Fraction of the vehicles entering the link that have had time-integrated, velocity-acceleration
products in the range of 19-36 cells squared per second squared after being idle for an hour
or more.

VCOLD3 | Fraction of the vehicles entering the link that have had time-integrated, velocity-acceleration
products in the range of 37-54 cells squared per second squared after being idle for an hour
or more.

VCOLD4 | Fraction of the vehicles entering the link that have had time-integrated, velocity-acceleration
products in the range of 55-72 cells squared per second squared after being idle for an hour
or more.

VCOLDS5 | Fraction of the vehicles entering the link that have had time-integrated, velocity-acceleration
products in the range of 73-90 cells squared per second squared after being idle for an hour
or more.

VCOLDG6 | Fraction of the vehicles entering the link that have had time-integrated, velocity-acceleration
products in the range of 91-108 cells squared per second squared after being idle for an hour
or more.

VCOLD?7 | Fraction of the vehicles entering the link that have had time-integrated, velocity-acceleration
products in the range of 109-126 cells squared per second squared after being idle for an hour
or more.

VCOLDS8 | Fraction of the vehicles entering the link that have had time-integrated, velocity-acceleration
products greater than 126 cells squared per second squared after being idle for an hour or
more or wereidlefor lessthan 1 hour.

9.2.6 readart.out

Thefilereadart.out is an output file produced by the Light-Duty Tailpipe submodule. Itisa
debugging file that provides intermediate output for the emission calculations.

Thefirst record contains ICX and DELTAF. The second record contains six valuesof F. The
third record contains six values of DEN. The fourth record contains six values of FI1J. Thefifth
record contains six values of HIJ. The sixth record contains six values of VEHFLUX and
VEHFT. The seventh record contains six values of VEHD and VEHDT. The eighth record
contains VBAR, SDEVRAT, VLOWRI, VUPPRI and V2SDEV. The ninth record contains five
values of VEHFLUXL. Thetenth record contains five values of VEHFLUXM. The deventh
record contains five values of VEHFLUXH. The twelfth through fourteenth records contain five
values of SPDBAR and SPDC. Thefifteenth through seventeenth records contain eighteen values
of PIJ. Records1- 17 arerepeated NV times.

Thefinal records contain N, XNOSUL, XNOSUC, XNOSUH, COSUL, COSUC, COSUH,
V2SDEV, SDEV, PL, PCC, and PH. Thefinal records are repeated NV times.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 153
LA-UR —99-2579

Table94: Fiddsinreadart.out

Field Inter pretation

ICX Segment of which the calculations are made.

DELTAF Width of the highest speed bin, always 24.6 feet per second.

F Average number of vehiclesina 7.5 meter cell.

DEN Fitted average number of vehicles per 7.5 meter cell.

FIJ Estimated average vehicle densities per spatial cell (24.6 feet) and per speed cell (24.6 feet per
second).

HIJ Gradient in estimated average vehicle density in units of number per spatial cell squared per speed
cdl.

VEHFLUX Estimated vehicle flux in each speed bin for speed bins 0-5 in units of number times feet per
second.

VEHFT Total estimated vehicle flux.

VEHD Estimated number of vehicles in each speed bin in each cdll

VEHDT Estimated total number of vehiclesin a spatial cell.

VBAR Estimated mean speed in feet per second.

SDEVRAT Estimated ratio of the standard-deviation of speed to mean speed.

VLOWRI Cutoff speed for the slowest one-third of the vehicles defined by flux in feet per second.

VUPPRI Cutoff speed for the slowest two-thirds of the vehicles defined by flux in feet per second.

V2SDEV Product of the square of the mean speed and the difference between the speed standard deviation
and its low congestion reference value in units of feet cubed per second cubed.

VEHFLUXL Estimated vehicle flux for the slowest third of the vehicles for the current segment, followed by the
that of the next four segments down the link.

VEHFLUXM Estimated vehicle flux for the middle third of the vehicles for the current segment, followed by the
that of the next four segments down the link.

VEHFLUXH Estimated vehicle flux for the fastest third of the vehicles for the current segment, followed by the
that of the next four segments down the link.

SPDBAR Estimated average cube of the speed in units of feet cubed per second cubed for the current
segment followed by that of four following segments down the link.

SPDC Estimated gradient in the cube of the speed normalized by the cube of a spatial cell per second
(24.6**3) in units of inverse fedt.

PIJ First three values give the probability of a hard acceleration for the slowest third, the middle third,
and the fastest third of the vehicles for the segment, while the 7" through the 9" give the
probability for insignificant accelerations for the slowest, middle, and fastest thirds respectively.
Currently, hard decelerations are not included, they would occupy the 13th through 15th slots.

N Segment for which the output is reported.

XNOSUL Estimated NO, emissions for the slowest third in units of grams per 7.5 meter cell.

XNOSUC Estimated NOy emissions for the middle third in units of grams per 7.5 meter cell.

XNOSUH Estimated NO, emissions for the fastest third in units of grams per 7.5 meter cell.

COSUL Estimated CO emissions for the slowest third in units of grams per 7.5 meter cell.

COSsuUC Estimated CO emissions for the middle third in units of grams per 7.5 meter cell.

COSUH Estimated CO emissions for the fastest third in units of grams per 7.5 meter cell.

V2SDEV Product of the square of the mean speed and the difference between the speed standard deviation
and its low congestion reference value in units of feet cubed per second cubed.

SDEV Standard deviation of speed derived from the estimated distribution.

PL Probability of a hard acceleration in the slowest third; unlike the earlier reference this includes an
adjustment if the slowest one-third isin the first speed bin.

PCC Probability of a hard acceleration in the middle third; unlike the earlier reference this includes an
adjustment if the middle one-third is in the first speed bin.

PH Probability of a hard acceleration in the fastest third; unlike the earlier reference this includes an
adjustment if the fastest one-third is in the first speed hin.

TRANSIMS-LANL-1.0 — Files— May 1999

Page 154

LA-UR —99-2579

9.2.7 emissions.out

Thefile emissions.out is an output file produced by the Light-Duty Tailpipe submodule. Thisfile
is written using the variable size box format and is ready to be visualized with the Output
Visualizer. Each record contains the five fields required by this format plus six data values as
described in Table 95.

Table95: Emissions output for Output Visualizer.

Field Interpretation

TIME Current time (seconds from midnight).
LINK Link 1D being reported.
NODE Node ID vehicles were traveling away from.

DISTANCE | Ending distance of the box (in meters) from the setback of the node from which the
vehicles were traveling away.

LENGTH L ength of box.

VTT Average speed in feet per second.

NOX Nitrogen oxides emissions (milligrams per 30 meter segment).
CO Carbon monoxide emissions (grams per 30 meter segment).
HC Hydrocarbon emissions (milligrams per 30 meter segment).
FE Fuel consumption (grams per 30 meter segment).

FLUX Vehicle flux in number times speed in feet per second.

9.3 Utility Programs

9.3.1 Readca

The Readca program transforms the link velocity summary output described in Section 8.2.7 into
the format required by the emissions module as described in Section 9.2.1. Thelink is partitioned
into boxes of a constant size except that the last box on the link may be shorter than the others.
The Readca program proportionally inflates the values for the last box to what might be expected
if the box were full sized.

Note that Readca includes some assumptions that are more restrictive than the generality in the
output available from the microsimulation. The program assumes that the boxes that partition the
link are 30 meters long; a value other than 30 for the microsimulation parameter
OUT_SUMMARY_BOX_LENGTH used when collecting velocity data will result in velocity
summary data that cannot be correctly processed by Readca. The Readca program assumes
exactly six velocity histogram bins are defined as described in Table 89. The simulation needs to
be run with the configuration key OUT_SUMMARY _VELOCITY_BINS set to 6 in order for this
to be accomplished. The program also assumes that the maximum length of alink is 3600 meters.
An error message is produced for links that exceed this length.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 155
LA-UR —99-2579

9.4 Files

Table96: Emission Estimator library files.

Type File Name Description
Binary Files |libTIO.a TRANSIMS Interfaces library
SourceFiles |libGlobals.a TRANSIMS Glaobal library
carlastcold.C Main emissions module that takes microsimulation velocity

summary data and outputs emissions that can be displayed in the
Output Visualizer

ENVConfigKeys.h

Defines emissions configuration keys

readca.C

Reads in a microsimulation velocity summary output file and outputs
the velocity data in a format that can be inputted to the main
emissions module

9.5 Examples

The examples presented in this section use the calibration 2 network which is the intersection
calibration network. Figure 4presents an example of some of the configuration parameters that

pertain to the Emissions Estimator.

Figure4: Example configuration parameters.

PLAN_FI LE
VEHI CLE_FI LE

OUT_DI RECTORY
OUT_SUMVARY NAME_1
OUT_SUMVARY_LI NKS 1
OUT_SUMVARY_BOX_LENGTH 1
OUT_SUMVARY_TYPE_1
OUT_SUMVARY_SAMPLE_TI ME_1
OUT_SUMVARY_TI ME_STEP_1
OUT_SUMVARY_VELOCI TY_BI NS_1
OUT_SUMVARY_VELOC! TY_MAX_
OUT_SUMVARY_ENERGY_BI NS 1
OUT_SUMVARY_ENERGY_MAX_1

NET_DI RECTORY
NET_NODE_TABLE

NET_LI NK_TABLE

NET_POCKET _LANE_TABLE
NET_PARKI NG_TABLE
NET_LANE_CONNECTI VI TY_TABLE
NET_UNSI GNALI ZED_NCDE_TABLE
NET_SI GNALI ZED_NODE_TABLE
NET_PHASI NG_PLAN_TABLE
NET_TI M NG_PLAN_TABLE
NET_STUDY_AREA LI NKS_TABLE

EM SSI ONS_ARRAY_PARAMETERS FI LE
EM SSI ONS_COVPOSI TE_| NPUT_FI LE

EM SSI ONS_M CROSI M VELOCI TY_FI LE

EM SSI ONS_VEH CLE_COLD_DI STRI BUTI ON
EM SSI ONS_WCEM RATI OS_FI LE

$TRANSI M5_ROOT/ dat a/ pl ans/ Tee. pl ans
$TRANSI M5_ROOT/ dat a/ vehi cl es/ Tee. vehi cl es

$TRANSI M5_ROOT/ out put
tee.sum

$TRANSI M5_ROOQT/ out put - specs/t ee_out put _| i nks
30

VELOCI TY

1

900

6

45

14

224

$TRANSI M5_ROOT/ dat a/ net wor ks/
Cal i bration_2_Nodes
Calibration_2_Links

Cal i bration_2_Pocket _Lanes

Cal i bration_2_Parking
Calibration_2_Lane_Connectivity
Cal i bration_2_Unsignalized_Nodes
Calibration_2_Signalized_Nodes
Cal i bration_2_Phasi ng_Pl ans

Cal i bration_2_Tim ng_Pl ans
Calibration_2_Study_Links

$TRANSI M5_ROOT/ dat a/ em ssi ons/ ARRAY. | NP
$TRANSI M5_ROOT/ dat a/ eni ssi ons/ arr ay. out
readca. out

$TRANSI M5_ROOT/ dat a/ em ssi ons/ vehcol d. di s
$TRANSI M5_ROOT/ dat a/ em ssi ons/ weenr ati 0s

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 156

A portion of a microsimulation velocity summary fileis shown in Figure 5. This data was

collected on the intersection calibration network using the configuration parameters set to the
valuesin Figure 4. The data consists of the velocity bins for link 1 starting at node 6 at time step
900. There are seventeen boxes on that particular link. Notice that the last box is only 15 meters
long instead of 30 meters..

Figure5: Examplevelocity summary file.

COUNTO COUNT1 COUNT2 COUNT3 COUNT4 COUNTS5 COUNT6 DI STANCE

[eloloNooNoloNe)

O~NRFROR MR
~NW©O MWW

© OO oW

WS

[eloloNooNoloNe)
[eloloNooNoloNe)
[eloloNooNoloNe)

= ©
O ©
0 O
w
BN
o w
o~
o
o U1
g

1714 607 123
1035 604 246
538 482 356
227 296 370

60 148 336
18 81 307
6 45 183

[ejolololoNoloNoNe]

293

[ejolololololololololololoNoloNeNe]

[ejolololololololololololoNoloNeNe]

495

RPRRRRRRRRRERRRRERRRR

I NK

[oNe NN NN NoNoNeNeNeoNoNo Ne) e NerNepN py

NODE
900
900
900
900
900
900
900
900
900
900
900
900
900
900
900
900
900

TI ME

A portion of areadca.out fileis shown in Figure 6. Thereadca.out fileis created by the Readca
program, which reformats the microsimulation output into a format that can be read in by the
Emissions Estimator. Figure 6 contains the output from the sample data in Figure 5.

Figure6: Examplereadca.out file.

nv= 17 900.0

0. OO0O0OE+00 0. 0000E+00
0. O0O00OE+00 0. 0000E+00
0. OO0O0OE+00 0. 0000E+00
0. O0O00OE+00 0. 0000E+00
0. OO0O0OE+00 0. 0000E+00
0. O0O00OE+00 0. 0000E+00
0. OO0O0OE+00 0. 0000E+00
0. O0O00OE+00 0. 0000E+00
1. 3340E+03 9. 9000E+02
1. 3830E+03 1. 9830E+03
8. 8000E+02 1. 7140E+03
4. 0600E+02 1. 0350E+03
1. 9900E+02 5. 3800E+02
8. 3000E+01 2. 2700E+02
1. 7000E+01 6. 0000E+01
7.0000E+00 1. 8000E+01
0. OO00E+00 1. 2000E+01

O©OORPNRAROODOBRANOOOOOOOO

1 6
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 3700E+02
. 6500E+02
. 0700E+02
. 0400E+02
. 8200E+02
. 9600E+02
. 4800E+02
. 1000E+01
. 0000E+01

15.0

. 0000E+00
. 0000E+00
. 0000E+00

000OE+00

. 0000E+00

000OE+00

. 0000E+00
. 0000E+00
. 5700E+02
. 8000E+01
. 2300E+02
. 4600E+02
. 5600E+02
. 7000E+02
. 3600E+02
. 0700E+02
. 6600E+02

QOUTWRNWNOOOOOOOOO

. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 3200E+02
. 6000E+01
. 6000E+01
. 9400E+02
. 3600E+02
. 0800E+02
. 0100E+02
. 8600E+02

[eleolololololojololoolooNoloNoNe]

. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00
. 0000E+00

Figure 7 shows the contents of the ARRAY.INP filethat is used as input by the Emissions

Estimator. It contains the parameters describing the number of records and increments used in the
array.out file.

Figure7: ExampleARRAY.INP file.

600.

-8.00 1.0 0.04 2

17 40 17

-12. 1.5

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 157

Figure 8 shows a portion of the contents of the array.out file that is used as input the Emissions
Estimator. The array.out file contains the composite vehicle emissions in 2-mph speed bins and

1.5 feet/second accderation bins. In this version of the Emissions Estimator, there are 17

accderation bins and 40 veocity bins. Figure 8 contains datafor al of the velocity bins for the
first acceeration bin.

Figure8: Examplearray.out file.

array for no grade Riverside region conposite
acc

\Y

1. 0000
3. 0000
5. 0000
7. 0000
9. 0000
11. 0000
13. 0000
15. 0000
17. 0000
19. 0000
21. 0000
23. 0000
25. 0000
27.0000
29. 0000
31. 0000
33. 0000
35. 0000
37. 0000
39. 0000
41. 0000
43. 0000
45. 0000
47.0000
49. 0000
51. 0000
53. 0000
55. 0000
57. 0000
59. 0000
61. 0000
63. 0000
65. 0000
67. 0000
69. 0000
71. 0000
73. 0000
75. 0000
77.0000
79. 0000

- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.
- 8.

1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816
1816

0O 000000000000 00000000000000000000000000

h

c

. 0064

0166
0273
0405
0605
0799
0998
1199
1399
1592
1792
1993
2192
2386
2587
2787
2981
3181
3380
3580
3774
3974
4174
4368
4568
4768
4968
5163
5362
5562
5756
5956
6156
6356
6550
6750
6950
7150

. 7344
. 7544

OO 000000000000 00000000000000000000000000

co

. 0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
0424
. 0424
. 0424

OO 000000000000 00000000000000000000000000

nox

0010
0010
0011
0011
0015
0016
0016
0016
0015
0016
0016
0016
0016
0016
0016
0016
0016
0016
0016
0016
0016
0016
0016
0016
0016
0016
0016
0016
0016
0016
0016
0016
0016
0016
0016
0016
0016
0016
0016
. 0016

OO 000000000000 00000000000000000000000000

fuel

. 4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
4867
. 4867
. 4867

Figure 9shows the contents of the wcenratios file that is used as input by the Emissions Estimator.

It contains the ratios of cold emissions to hot engine emissions.

Figure9: Examplewcemratiosfile.

. 675115
. 736057
. 499989
. 364250
. 248882
. 159666
. 120635
. 000000

RPRRPRRRERRLRN

2

116624

1. 388528

RPROORR

. 172226
. 040638
. 946900
. 981162
. 061412
. 000000

PRRPRRRRR

. 499590
. 166301
. 069732
021857
022250
. 084750
. 119071
. 000000

. 086956
. 089943
. 099898
. 078881
. 071876
. 079329
. 074729
. 000000

RPRRPRRRERRE

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 158

Figure 10 shows the contents of the vehcold.dis file that is inputted into the Emissions Estimator.
It contains the distribution of vehicles entering the link stratified by the time integrated, velocity-
accderation product and by the time the engine was idle before the start of the current trip.

Figurel0: Examplevehcold.disfile.

POOOOO0O0O
o
S

Figure 11 shows a portion of the contents of areadart.out file that is created by the Emissions
Estimator. The readart.out fileis a debugging file used to provide immediate output for the
emissions calculations. Figure 11 contains the output for calculations done on the link seen in
Figure 5and Figure 6 for thefirst box that actually contains vehicle velocities.

Figurell: Examplereadart.out file.

icx= 9 deltaf= 24.6
1334.0 990.0 237.0 157.0 0.0 0.0
1334.0 990.0 237.0 157.0 0.0 0.0
5.511E-01 4. 090E- 01 9. 791E- 02 6. 486E- 02 0. 000E+00 0. 000E+00
1. 632E-02 -2.788E-02 2.586E-03 -5.273E-03 0. O0O0OE+00 - 0. 000E+00

4. 982E+02 5. 238E+03 2. 994E+03 2. 736E+03 0. O0OE+00 0. O0OE+00 1. 147e+04

3. 335E+02 2. 475E+02 5. 925E+01 3. 925E+01 0. O0OOE+00 0. OOOE+00 6. 795e+02
16. 87 1. 22417 25. 38 55. 29 3973. 63

3821.896 8269.800 7104.944 6757.693 6864.691

3821.911 8269.743 7104.894 6757.607 6864.621

3821. 843 8269.757 7104.881 6757.621 6864.668

2474. 3957. 4909. 12280. 34195. 0. 0415
58176. 49331. 45331. 105579. 275911. 0.9770
299058. 588877. 257405. 469191. 744376. 5. 0222

0.028 1.000 1.000 0.000 0.000 0.000

0.972 0.000 0.000 0.000 0.000 0.000

0. 000 0.000 0.000 0.000 0.000 0.000

9. 3.48 2. 44 2.23 72.5 53.7 56. 2 3973. 6 20.7 0.028 1.000
1. 000

TRANSIMS-LANL-1.0 — Files— May 1999 Page 159
LA-UR —99-2579

Figure 12 shows a portion of the contents of an emissions.out file that is created by the Emissions
Estimator. The emissions.out file is used as input into the Output Visualizer. Figure 12 contains
the data for timestep 900 link 1 running from node 6 as seen in the above examples.

Figurel2: Exampleemissions.out file.

TI ME LI NK NODE DI STANCE LENGTH VTT NOX
900 1 6 30.0 30.0 0.0 0.0 0.0
900 1 6 60.0 30.0 0.0 0.0 0.0
900 1 6 90.0 30.0 0.0 0.0 0.0
900 1 6 120.0 30.0 0.0 0.0 0.0
900 1 6 150.0 30.0 0.0 0.0 0.0
900 1 6 180.0 30.0 0.0 0.0 0.0
900 1 6 210.0 30.0 0.0 0.0 0.0
900 1 6 240.0 30.0 0.0 0.0 0.0
900 1 6 270.0 30.0 11.5 32604.5 729.9
900 1 6 300.0 30.0 16. 3 12839.2 335.7
900 1 6 330.0 30.0 17.3 21346. 9 505. 3
900 1 6 360.0 30.0 23.3 80315. 2 1580. 5
900 1 6 390.0 30.0 31.7 67776.4 1351. 8
900 1 6 420.0 30.0 41. 4 51067. 9 990. 5
900 1 6 450.0 30.0 51.9 43343.4 827.7
900 1 6 480.0 30.0 56. 2 41092.1 760. 3
900 1 6 495.0 15.0 56. 2 7165.3 123.3

cooococoof

[cleolololololoNe]
oooococooodk

[elolololoNoloNe)

0
77223.1 2960.7
34413.7 2908.9
59210. 4 2921. 2
161250. 3
140743.9
102631. 5
84388. 2 2894.5
76519.0 2772.0
10860. 7 892. 5

FE FLUX

COOLOLoo
cooocococooo

7797.
16868. 0
14493.0
5311.7 13772.0
4397.7 14001.0
3367.0 13593.0
13868.0
14246. 0
14809. 0

Figure 13 shows the Output Visualizer emissions colormaps that were used in this version of the
Emissions Estimator to color the network’s boxes. Thresholds and their colors are defined in the
colormaps. See the section on Visualization for interpretation of thisfile,

Figurel3: Example Output Visualizer emissions color maps.

6 0.0 80.0 Emi ssions Velocity Map

6 0.0 70000.0 Enissions Nitrogen Oxi de Map

POOOO®

0
9
5
3
0

200.0 Emi ssions Carbon Mni xi de Map

6 0.0 140000. 0 Emi ssions Hydrocarbons Map
200.0 8

20000.0 O

60000.0 9

100000.0 5

140000.0 3

6 0.0 4000.0 Em ssions Fuel Economy Map

=
o
S

oo

oo

4000.0 3

6 0.0 14000.0 Enissions Flux Map
200.0 8

2000.0 O

6000.0 9

10000.0 5

14000.0 3

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 160

Figure 14 through Figure 19 show examples of visualization of emissions calculated for the
Intersection calibration network.

Time: 01500 V1T

Figurel4: Velocities.

Time 07500 k0%

TRANSIMS-LANL-1.0 — Files— May 1999 Page 161
LA-UR — 99-2579

Figurel15: NOy (nitrogen oxides) emissions.

Time: 0:15:00 CO

Figurel16: CO (carbon monoxide) emissions.

Tirme: 0:15:00 HC

TRANSIMS-LANL-1.0 — Files— May 1999 Page 162
LA-UR — 99-2579

Figurel7: HC (hydrocarbon) emissions.

Time: 0:15:00 FE

Figurel8: FE (fuel consumption).

Time: 0:15:00 FLUX

Figurel9: FLUX (vehicleflux).

TRANSIMS-LANL-1.0 — Files— May 1999 Page 163
LA-UR — 99-2579

TRANSIMS-LANL-1.0 — Files— May 1999 Page 164
LA-UR —99-2579

10. ITERATION DATABASE

This section describes the iteration database, which records summary data for each execution of a
TRANSIMS program.

10.1 Terms

mmapped Memory mapped; files are mapped directly into memory.

iteration Execution of one TRANSIMS program leg (e.g., Activity Generator, Route
Planner, Traffic Microsimulator).

10.2 File Format

Two types of fileswill beused by the ITDB: theindex file and theiteration file. Theindex fileis
described in Section 11. The primary key is given as records are added to the database (e.g.,
traveler ID), and the secondary key is the iteration number.

Theiteration fileis a text file with comma-separated fidds. The meaning of thefiddsis
determined when thefileis created. Thefirst line of each iteration file describes the iteration from
which thefile was generated. The second line of each fileis a comma-separated list of field
headings. Each fidd is assumed to be numeric (either integer or floating point).

10.3 Interface Functions

In any function that takes a string representing a record as an argument, an empty field is
represented by two consecutive commas (i.e, “,,”). Inany function that takes an array of strings
representing a record as an argument, a blank field can be represented by either an empty string or
aNULL pointer to astring. The last pointer in the array should be NULL.

The String functions return a null-terminated string that is a copy of the record/field requested.
The contents of the string are modifiable, and the string needs to be freed after use.

If a particular field is empty, it is assumed that the value for that field has not changed since the
last iteration.

The Data functions return a pointer into the mmapped file in which the record/field resides.
Changing data through this pointer will change the actual iteration file where the data resides. This
pointer should not be freed.

10.3.1 ITDB_Create

Sgnature: | TDB* | TDB_Create(char* base_fil enane, char* fields)
Description: Creates a new iteration database.

Ar gunent : base fil enane - filenameto createfiles with, filename.idx for the index
and filename.#.it for each iteration, where # is the iteration number.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 165
LA-UR —99-2579

fi el ds — field names as a comma-separated string.
Return Value: A pointer to a new iteration database on iteration O.

10.3.2 ITDB_CreateV

Sgnature: I TDB * | TDB_CreateV(char* base_fil enane, char?*
fields[], int key)

Description: Creates a new iteration database with the given filename.

Ar gunent : base fil enane — filenameto createfiles with, filename.idx for the index
and filename.#.it for each iteration, where # is the iteration number.
fiel ds — fidd namesasan array of strings.
key — value of the key for which to return records.

Return Value: A pointer to a new iteration database on iteration 0.

10.3.3 ITDB_Open
Sgnature. | TDB* | TDB_Open(char* base_fil enane)

Description: Opens an existing ITDB.
Argument: base_fi | ename — thefilename of the ITDB.

Return Value: A pointer to an existing iteration database on the sameiteration it had when
closed.

10.3.4 ITDB_Close
Sgnature. void | TDB_d ose(| TDB* db)

Description: Closesan ITDB and free all resources. Upon return, db is no longer avalid
pointer.

Argument: db — the database to close.

Return Value: None.

10.3.5 ITDB_Currentlteration
Sgnature. int 1 TDB Currentlteration(lTDB* db)

Description: Returns the current iteration number.
Argument: db — theitdb on which to operate.

Return Value: Current iteration number.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 166
LA-UR —99-2579

10.3.6 ITDB_Newlteration
Sgnature: int 1TDB_Newlteration(lTDB* db, char* conment)

Description: Starts on a new iteration.

Ar gunent : db — theitdb on which to operate.
coment — comment to be stored as thefirst line of the new iteration file.

Return Value: New iteration number.

10.3.7 ITDB_Add
Sgnature. void | TDB_Add(1 TDB* db, int key, char* data)

Description: Adds datato key for the current iteration. If data exists for the key given, the
new data is added to the index following the old data.

Ar gunent : db - theitdb onwhich to operate.
key — value of primary key.
dat a — a comma-separated string of field values.

Return Value: None.

10.3.8 ITDB_AddV
Sgnature. void | TDB_AddV(I TDB*, int key, char* data[])

Description: Adds datato key for the current iteration. If data already exists for the key
given, the new data is added to the index following the old data.

Ar gunent : db — theitdb on which to operate.
key — value of primary key.
dat a — an array of fied values.

Return Value: None.

10.3.9 ITDB_GetCurrentString
Sgnature char* 1 TDB GetCurrentString(l1TDB* db, int key)

Description: Get datafor key from the current iteration.

Argument: db — theitdb in which to operate.
key — value of key for which to retrieve information.

Return Value: Null-terminated copy of thedata. The caller isresponsible for deleting this
string.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 167
LA-UR —99-2579

10.3.10 GetCurrentData
Sgnature. char* |1 TDB GetCurrentData(l TDB* db, int key)

Description: Get datafor key from the current iteration.

Argument: db — theitdb on which to operate.
key — value of key for which to retrieve data.

Return Value: A pointer into the mmapped fidd. Changes to the string will change the
actual file. This pointer should not be freed.

10.3.11 ITDB_GetString
Sgnature char* 1 TDB GetString(1TDB* db, int it, int key)

Description: Get data for key from the given iteration.

Argument: db — theitdb on which to operate.
i t — iteration from which to retrieve data.
key — value of key for which to retrieve information.

Return Value: Null-terminated copy of thedata. The caller isresponsible for deleting this
string.

10.3.12 ITDB_GetData
Sgnature. char* |1 TDB GetData(lTDB* db, int it, int key)

Description: Get data for key from the given iteration.
Argument: db — theitdb on which to operate.
i t — iteration from which to retrieve data.

key — value of key for which to retrieve information.

Return Value: A pointer into the mmapped file. Changes to the string will change the
actual file. This pointer should not be freed.

10.3.13 ITDB_GetTotalString
Sgnature. char* |1 TDB Get Total String(l1TDB* db, int key)

Description: Returns the latest data over all iterations for key. Searches back through the
iterations for the last non-blank entry for each fidd.

Argument: db — theitdb on which to operate.
key — value of key for which to retrieve information.

Return Value: Null-terminated copy of thedata. The caller isresponsible for deleting this
string.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 168
LA-UR —99-2579

10.3.14 ITDB_GetCurrentField
Sgnature: char* | TDB CetCurrentFiel d(1TDB* db, int key, int field)

Description: Returns the specific field for the current iteration for key.

Ar gunent : db - theitdb onwhich to operate.
key — valueaof key for which to retrieveinformation.
field—fiddtorerieve

Return Value: String containing specified field.

10.3.15 ITDB_GetField
Sgnature: char* | TDB CetField(1TDB* db, int key, int field,
int it)

Description: Returns the specified field for the specified iteration for key.

Argument: db — theitdb on which to operate.
key — key for which to retrieve information.
field-—fiddtoretrieve
i t — iteration from which to retrieve information

Return Value: String containing specified field.

10.3.16 ITDB_GetFirstField
Sgnature: char* | TDB CetFirstField(lITDB* db, int key, int field,
int it)
Description: Returns the specified field for the earliest iteration that has data.

Argument: db — theitdb on which to operate.
key — key for which to retrieve information.
field-—fiddtoretrieve
i t — iteration from which to retrieve information.

Return Value: String containing specified field.

10.3.17 ITDB_GetLastField

Sgnature: char* | TDB_ CetLastFiel d(1TDB* db, int key, int field,
int it)

Description: Returns the specified field for the latest iteration that has data.
Argument: db — theitdb on which to operate.
key — key for which to retrieve information.

field—fiddtoretrieve
i t — iteration from which to retrieve information.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 169
LA-UR —99-2579

Return Value: String containing specified field.

10.3.18 ITDB_FieldNameToNumber
Sgnature. int 1 TDB_Fi el dNaneToNunber (1 TDB* db, char* nane)

Description: Converts between field name and field number.

Argument: db — theitdb on which to operate.
name — name to look up.

Return Value: Number of the given field, or —1 if it was not found.

10.3.19 ITDB_FieldNumberToName
Sgnature. char* | TDB_Fi el dNunber ToNane (1 TDB* db, int nun)

Description: Converts between field number and field name.

Argument: db — theitdb on which to operate.
num— number to look up.

Return Value: String containing the field name, or NULL if it was not found.

10.3.20 ITDB_ItCreate
Sgnature: ITDB It* ITDB_ItCreate(l TDB* db, int iteration)

Description: Creates an iterator for the records of the given iteration.
Argument: db — database over which to iterate.
i teration —thenumber of theiteration over which to iterate. If

iterationis—1, thendo dl iterations.

Return Value: Aniterator set to thefirst record of the proper iteration.

10.3.21 ITDB_ItCreateRecord
Sgnature: ITDB It* 1TDB_ItCreateRecord(1TDB* db, int key)

Description: Creates an iterator for all iterations of the given record.

Argument: db — database over which to iterate.
key — value of the key for which to return records.

Return Value: Aniterator set to thefirst record of the proper iteration.

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 170

10.3.22 ITDB_lItDestroy
Sgnaturee void I TDB ItDestroy(ITDB It* it)

Description: Destroys an iterator and frees all resources.
Argument: it — theiterator to destroy
Return Value: None.

10.3.23 ITDB_ItReset
Sgnaturee void I TDB ItReset (I TDB It* it)

Description: Resatsiterator to beginning.
Argument: it — theiteration on which to operate.
Return Value: None.

10.3.24 ITDB_ItAdvance
Sgnature. void I TDB It Advance(I TDB It* it)

Description: Advances to the next record.
Argument: it — iteration which to operate.
Return Value: None.

10.3.25 ITDB_ItMoreData
Sgnaturee int 1 TDB ItMoreData(l TDB It* it)

Description: Isthere more data?
Argument: it — theiteration on which to operate.

Return Value: O if thereis no more data.
non-zero if thereis more data.

10.3.26 ITDB_ItGetString
Sgnature char* ITDB ItGetString(1TDB It* it)

Description: Returns the current record.
Argument: it — theiteration on which to operate.

Return Value: A null-terminated string containing a copy of therecord. Thecaller is
responsible for freeing this data.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 171
LA-UR —99-2579

10.3.27 ITDB_ltGetData
Sgnature char* I TDB ItGetData(l TDB It* it)

Description: Returns the current record.
Argument: it — theiteration on which to operate.

Return Value: A pointer into the mmapped file. Changes to the string will change the
actual file. This pointer should not be freed.

10.3.28 ITDB_StringToArray
Sgnature: char** |1 TDB_StringToArray(char* str)

Description: Converts a single string containing multiple fields to an array of strings
containing single records.

Argument: st r — astring containing comma-separated fieds.

Return Value: Anarray of strings, onefield per string. Thelast dement of the array is
NULL. Thecaller isresponsible for freeing the returned pointer.

10.3.29 ITDB_ArrayToString
Sgnature: char* | TDB_ArrayToString(char** array)

Description: Convert an array of fidds to a single string.

Argument: array — an array of strings containing fields. Thelast dement of the array
must be set to NULL.

Return Value: A single string containing the comma-separated fields.

10.4 Data Structures

10.4.1 ITDB

This structure contains all of the information about an iteration database.

typedef struct itdb_s

/** The current iteration nunber. **/
int iteration;

/** Used to construct the itdb fil ename. **/
char* base fil enane;

/** Name of the current iteration file; base.#.it. **/
char* idx_fil enane;

/** File descriptor for current iteration file. **/

TRANSIMS-LANL-1.0 — Files— May 1999 Page 172
LA-UR —99-2579

int it _fd;

/** Array of labels for the fields of the database. **/
char* field_ | abels;

/** The nunber of fields. **/
int numfields;

/** End of the current iteration file. **/
size_t it_pos;

/** Index of all iteration files. **/

BTr ee* i ndex;
} |1 TDB;

10.4.2 ITDB_lIt

This structureis an iterator into an iteration database.
typedef struct itdbit_s

/** The index for this iterator. **/
BTr ee* i ndex;

/** The index iterator. **/
BTreelt* index_ it;

/** The iteration to iterate through. -1 neans all iterations. **/
int iteration;

/** lterate through one record only. -1 neans all records. **/

int key;

} ITDB_It;

10.5 Utility Programs

10.5.1 ITDB_TEST

This utility tests ITDB functions.

10.6 Files

Table97: Iteration databaselibrary files.

Type FileName Description

Binary Files | libitdb.a TRANSIMS interfaces library
Source Files |itdb.h Defines iteration database data structures and interface
functions
itdb.c Iteration database interface functions sourcefile

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 173

11. INDEXING

TRANSIMS data files (particularly the activity, plan, output, and iteration database files) may be
very large. Furthermore, the following common operations on these files must be efficient:
- modify small, randomly scattered records

merge modifications back into the original file

sort on several different keys

retrieve specified records

File indexing provides a mechanism for efficient use of these largefiles.

TRANSIMS provides a C library that supports accessing files through an associated index. It also
incorporates a particular strategy for using this library within the TRANSIMS framework. This
section describes the indexes, library routines, and the way they are used within TRANSIMS.

11.1 Terms

index entry Anindex entry (the structure BTr eeEnt r y defined in btree.h) contains a pointer
to adisk file, abyte offset into the file, and the value of a major and minor key
associated with the data record to be found at the given offset in the given file.

index An index (the structure BTr ee defined in btree.h) is a sorted set of entries together
with alist of file names referred to by the entries. 1t is stored on disk and read into
memory for use.

index file File containing a sorted index of one or more datafiles.

iterator An iterator (the structure BTr eel t defined in btree_it.h) is, in effect, a pointer to
an index entry. It is used to iterate through anindex in a fixed order.

notional file Thefilethat would result if the data records referred to by all of the entriesin an
index were gathered into a singlefile.

11.2 Usage

An index must be created for each file to be accessed by index. Creating an index involves reading
each data record in thefile, determining the values of the fidds to be used as keys, noting the byte
offset for the beginning of that record, and inserting an entry into theindex (BTr ee). Eachindex is
given a name derived by adding an extension to the base data file. The extension indicates the
major sort key for theindex and that thefileisan index. For example, .trv.idx indicates that the
fileis anindex whose major sort key istraveler ID. These extensions are defined in the 1O library
header files.

Indexes are sorted according to the fields used for the major and minor sort keys. If adatafile
must be accessed in a particular order, for example by traveler ID, it is more efficient to build an
index with that field as the major sort key than to create another data file that has been sorted.
Thus, the framework will often expect several different indexes for each datafile.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 174
LA-UR —99-2579

TRANSIMS provides C library routines for creating the indexes used by the framework, as well as
standalone utility programs. Given the name of a data file to index, these routines first determine
whether the required index files already exist, with a modification date more recent than that of the
datafile. If so, nothing is done. Where possible, these routines also create an index by examining
other available indexes instead of scanning the entire data file. For example, there are two indexes
for plan files; one has traveler ID as a mgjor sort key and departure time as the minor key; the
other has the sort keys reversed. Thus, one index can be created from the other without looking at
the original data.

The user has access to functions used to compare keys. The current functions compare the
primary sort key first. If these are equal, they compare the secondary sort keys. It is possibleto
specify adon’t care value for the secondary sort key, which will compare equal to any secondary
sort key value.

Indexes may be merged. In this case, entries appearing later in the set of indexes replace earlier
entries. None of the data in the original data files needs to be moved to merge the indexes, yet
iterating through the merged index will yield the same results as if the data files themseaves had
been merged and sorted.

Similarly, removing entries from an index makes the corresponding data invisible to users
accessing the data file through the index.

After several merge, sort, and filter operations, it becomes difficult to determine the contents of the
resulting “notional” file except by using the indexing scheme. To support users who may wish to
use other data processing tools, TRANSIMS provides the ability to defragment the data pointed to
by anindex. That is, it provides executables that will create a new file on disk identical to the
notional file.

Table98: Indexesused by TRANSIM S components.

Data File Type Extension

Major, Minor Sort
Keys

Creator(s)

Activity file .hh.idx Household ID, IndexActivityFile Route Planner,
Person ID Iteration Database

Plan file trv.idx Traveler ID, Route Planner, Traffic Microsimulator,
Activation Time IndexPlanFile Iteration Database

Plan file tim.idx Activation Time, PlanFilter, Traffic Microsimulator
Traveler ID IndexPlanFile

Event Output trv.idx Traveler ID, Iteration Database Iteration Database
Trip 1D

Event Output Jloc.idx Location ID, Iteration Database Iteration Database
Traveler ID

Vehiclefile .veh.idx Vehicle D, Household ID | Population Synthesizer, Route Planner,

IndexVehicle File Traffic Microsimulator

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 175

11.3 Interface Functions

11.3.1 BTree_Create

Sgnature. void BTree_Create(BTree* tree, const char* data_file,
const char* index_file)

Description: Creates a new index; does not add any entries to theindex file.
Argument: tree —treeto create; assumest r ee isavalid pointer.
date fil e —nameof filewherethe data resides.

i ndex_fil e —nameof index fileto create.

Return Value: None.

11.3.2 BTree_Open

Sgnature. void BTree_Open(BTree* tree, const char* index_file)
Description: Opens an existing btree index file.

Argument: tree — treeto open; assumest r ee isavalid pointer.
i ndex_f il e — name of index fileto open.

Return Value: None.

11.3.3 BTree_Close

Sgnature. void BTree_O ose(BTree* tree)
Description: Closes a btree and releases resources.
Argument: tree —treeto close the pointer is not freed.

Return Value: None.

11.3.4 BTree_CreateFrom File

Sgnature: BTree* BTree_CreateFronFil e(const char* data_file, const
char* index_file, enum act_keys keyl, enum act_keys key2)

Description: Creates a btree from a given datafile.

Ar gunent : dat a_fi | e — datafile from which to read entries.
i ndex_fil e —index filetowhich entries will be added.
keyl — fidd number of primary key.
key?2 — fidd number of secondary key.

Return Value: A new index containing the entries from the data file.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 176
LA-UR —99-2579

11.3.5 BTree_AddFileTolndex

Sgnature. void BTree_AddFi | eTol ndex(BTree* tree, char* data_file)
Description: Adds entriesinfileto tree.

Argument: tree — treeto which entries will be added.
data_fil e — datafilefrom which to take entries.

Return Value: None.

11.3.6 BTree_lInsert

Sgnature void BTree_lnsert (BTree* tree, BTreeEntry* entry)
Description: Inserts an entry into a btree.

Argument: tree — index to which entries will be added.
ent ry — theentry to add.

Return Value: None.

11.3.7 BTree_AddFilename

Sgnature: i nt BTree_AddFi | enane(BTree* tree, char* fil enane)
Description: Adds an additional data filename.

Argument: tree — treeto which filename will be added.
fil ename — datefileto add.

Return Value: Thefile number of the added filename.

11.3.8 BTree_GetFilename

Sgnature: char* BTree_GCetFil enane(BTree* tree, int i)
Description: Converts from file number in a BTr eeEnt r y to file name.

Argument: tree — treein which to do the lookup.
i — file number to look up.

Return Value: Thefilename of the corresponding data file, or NULL if thereis no such data
file

11.3.9 BTree_GetFileNumber

Sgnature: int BTree_CetFil eNunber (BTree* tree, const char*
fil enane)

Description: Converts from file name to file number.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 177
LA-UR —99-2579

Argument: tree — treein which to do the lookup.
fi | ename — data file nameto look up.

Return Value: Thefilenumber of the corresponding data file, or —1 if there is no such data
file

11.3.10 BTree_ClearFilename

Sgnature. void BTree_d ear Fi | ename(BTree* tree)
Description: Removes all filenames.
Ar gunent : t r ee — tree from which to remove filenames.
Return Value: None.

11.3.11 BTree_RenumberFiles

Sgnature. void BTree_RenunberedFil es(BTree* tree, int dest,
int src)

Description: Renumbers filenumber in entries of atree.
Ar gunent : t r ee — treein which to do the renumbering.
dest — the new file number.
src —theold file number, if —1 renumber all entries.

Return Value: None.

11.3.12 BTree_GetDataPointer
Sgnature: char* BTree_GCet Dat aPoi nter (BTree* tree, BTreeEntry* e)

Description: Gets entry in the data file for entry.

Argument: tree — treein which to do lookup.
e — entry for which to find data.

Return Value: A pointer into the mmaped file, or NULL if the datais not found.

The pointer is not null-terminating (‘\0'). Any changes made through this
pointer will be reflected in the data file. This pointer should not be freed.

11.3.13 BTree_GetDatalLine
Sgnature: char* BTree_Cet Dat aLi ne(BTree* tree, BTreeEntry* e)

Description: Gets entry in the data file for entry.

Argument: tree — treein which to do lookup.
e — entry for which to find data.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 178
LA-UR —99-2579

Return Value: A copy of thedata, or NULL if the datais not found.
The pointer is null-terminated (‘\0'). Any changes made through this pointer
will not bereflected in the data file. The caller isresponsible for freeing this
pointer.

11.3.14 BTree_FindEntry
Sgnature: BTreeEntry* BTree_FindEntry(BTree* tree, BTreeEntry* e)

Description: Findsan entry in atree.

Argument: tree — thetreein which to do the search.
e — entry to find, only needs keys to be set up correctly.

Return Value: The complete entry in thetree, or NULL if the entry was not found.

11.3.15 BTree Validate

Sgnature. void BTree_Val i date(BTree* tree, const char* from

Description: Validatesatree. Currently, checks for the following:
- Proper order of dementsin tree
- Correct number of entries
- Stuff in valid subtree
- valid key types
- valid file number
- valid child pointers

Argument: tree —treetovalidate.
f r om— where called from, used to print message (only if problem found).

Return Value: None.

11.3.16 BTreeDeleteEntry
Sgnature. void BTree_Del eteEntry(BTree* tree, BTreeEntry* e)

Description: Deletes anindex entry in atree. Does not modify any data files.

Argument: tree — treefromwhich to deete.
e —entry to ddete.

Return Value: None.

11.3.17 BTreelt_Create
Sgnature: BTreelt* BTreelt_Create(BTree* tree)

Description: Creates an iterator to atree.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 179
LA-UR —99-2579

Argument: t ree — thetreeinto which to point.
Return Value: Aniterator into thetree. Thisiterator should be destroyed with

BTreelt_Destroy() tofreeall resources. Thisiterator isinvalid if the
treeis modified.

11.3.18 BTreelt-Reset
Sgnature. void BTreelt_Reset (BTreelt* it)

Description: Resets aniterator to point to thefirst entry of thetree.
Ar gunent : i t —theiterator to reset.
Return Value: None.

11.3.19 BTreelt Advance
Sgnature. void BTreelt_Advance(BTreelt* it)

Description: Advances the iterator to the next entry in thetree.
Argument: it — theiterator to advance.
Return Value: None.

11.3.20 BTreelt_MoreData
Sgnature: int BTreelt_MreData(BTreelt* it)

Description: Areweat the end of theindex?
Argument: it — theiterator to check.

Return Value: 0 if there are no more entries; non-zero if there are more entries.

11.3.21 BTreelt_Get
Sgnature. BTreeEntry* BTreelt_ Get (BTreelt* it)

Description: Gets the entry to which theiterator points.
Argument: it — theiterator to query.

Return Value: A pointer to the current entry inthetree, or NULL if theiterator isinvalid.
The entry should not be modified or freed.

11.3.22 BTreelt_Destroy
Sgnature: void BTreelt_Destroy(BTreelt* it)

TRANSIMS-LANL-1.0 — Files— May 1999 Page 180
LA-UR —99-2579

Description: Destroys an iterator and frees all resources.
Argument: it — theiterator to destroy.
Return Value: None.

11.3.23 BTreelt_Getlterator
Sgnature: BTreelt* BTreelt_GCetlterator (BTree* tree, BTreeEntry* e)

Description: Returns an iterator pointing to an entry in thetree.

Argument: tree —treeinwhich to find the iterator.
e — entry to set the iterator to, only needs keys to be set up correctly.

Return Value: Aniterator that pointsto e; or NULL if e was not found.

11.3.24 BTreelt_Compare_Equal
Sgnature: int BTreelt_Conpare_Equal (BTreelt* i1, BTreelt* i2)

Description: Compares two iterators.
Argument: i1, i2 —iteratorsto compare.

Return Value: 0Oif theiterators do not point to the same entry in the tree; non-zero if they do
pint to the same entry.

11.4 Data Structures

11.4.1 Key

This structureis used to represent the value of a key.

t ypedef union u_key

/** A key can be either an integer or a floating point nunber. **/
int I;

float f;

} Key;
11.4.2 BTreeEntry

This structureis used as an index entry; it holds two keys—the file number and offset where the
data resides.

typedef struct btree_entry_s

{
/[** Primary Key. **/
Key key1;

TRANSIMS-LANL-1.0 — Files— May 1999 Page 181
LA-UR —99-2579

/** Secondary Key. **/
Key key2;

/** Nunber of bytes from beginning of file. **/
off t offset;

/** Nunber of data file. **/
short file;

/** Key data types. **/
char key_type;

[** Unused. **/
char pad;

} BTreeEntry

11.4.3 BTreeNode

This structure is used as the node of a btree; it holds up to BTREE_ORDER entries and
BTREE or der +1 children.

typedef struct btree_node_s

/** Nunber of keys currently in this node. **/
i nt keys;

/** |Is this a | eaf node? **/
int |eaf;

/** Data to be stored. **/
struct btree_entry key [BTREE _CRDER];

[** Child pointers. **/
of f _t chil d[BTREE_ORDER+1] ;

/** Paddi ng to nake node even multiple of page size. **/
char pad[20];

} BTreeNode

11.4.4 BTree

This structure contains information about a btree. It is sized so that it takes up thefirst page of the
btree index file (BTREE_PAGESI ZE bytes). One btree can have up to 255 datafiles, with a
combined filename length of 5596 bytes.

typedef struct btree_s

/** I ndex of Root of tree. **/
off t root;

/** Index file. **/
int index fd;

/[** Start of node array. **/

TRANSIMS-LANL-1.0 — Files— May 1999 Page 182
LA-UR —99-2579

struct btree_node* index;

/** Nunber of nodes used. **/
size t size;

/** Nunber of nodes all ocated. **/
size t allocated;

/** Nunber of entries in the tree. **/
size t entries;

/** Height of the tree. **/
size_t height;

/** Field nunber of keyl. **/
short key1l;

/** Field nunber of key2. **/
short key2;

[** Order of this btree, used as sanity check. **/
short order;

/** Nunber of data files. **/
char numfil enanes;

/** Version of btree file, used as sanity check. **/

char version;

/** File Descriptors for data files. **/
int data fd[256];

/[** Pointers to mraped files. **/
char* dat a[256] ;

[** Ofset in filename array of filenames. **/
short fil enanme_of f[256];

/** Nanes of index files. **/
char fil enane[5596];

} BTree;

11.4.5 Btreelt

This structure holds a pointer into a btree index.
typedef struct btree_it

[** Tree into which this iterator points. **/
BTree* tree;

/** Height of the tree. **/
i nt height;

/** Level in the tree of the iterator. **/
int |evel;

/** Path fromroot of tree to current position. **/
of f _t* node;

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 183

/[** Current key nunber at each level in path. **/
size_t* key;

} BTreelt;

11.5 Utility Programs

11.5.1 IndexFilenames

The purpose of thistoal isto allow easy inspection and reassignment of the data file names referred
to by an index.

Each index file maintains a directory listing the names of the data files to which its entries refer,
and a default UNIX directory path which is prepended to any filenames which do not begin with
the character “/”. Thedirectory entries themsalves contain pointersinto thislist of filenames.
When a data fileis moved, it is more efficient to update the list of filenames than to recreate the
index.

Thistool can beinvoked in either “ writé’ or “read” mode. Inwrite mode, it smply prints the
default directory and file names, one per ling, into afile. Inread mode, it reads the default
directory and file names from afile and overwrites the current settings in the index file.

Usage: | ndexFi | enames <i ndex> <conmand> <fil e>

Where <i ndex> istheindex fileto read or modify, <command> is“w” to write the names of the
datafilesto<fil e>or “r” toread the names of the datafilesfrom<fi | e>. Thefirst line of

<f il e> isthe default directory, which will be prepended to any data file name that does not begin
witha“/” or “.”. For example, to change the name of location of the datafiles for the local
activities household index, the following commands would be needed:

| ndexFi | enames | ocal . act. hh.idx w names
vi nanes # edit nanes of data files
| ndexFil ename |ocal.act.hh.idx r names

Example:

This example shows how to update the index plans.tim.idx if the data files it refers to are moved
from /tmp to /home/eubank.

gershwi n 1> $TRANSI M5_HOWE/ bi n/ | ndexFi | enames pl ans. ti midx w nanes
gershwi n 2> cat nanes

/[t

pl ans. 1

pl ans. 2

gershwi n 3> cat > newnanes

/ horre/ eubank

pl ans. 1

pl ans. 2

gershwi n 4> $TRANSI M5_HOME/ bi n/ | ndexFi | enanes pl ans.timidx r newnanes

Troubleshooting:

TRANSIMS-LANL-1.0 — Files— May 1999 Page 184
LA-UR —99-2579

It isan error to reduce the number of filenames held in an index’ s directory, since some entries will
no longer point to a valid filename. It is not an error to have duplicate file names, although it may
cause inefficient memory use when the index is used.

11.5.2 IndexActivityFile, IndexPlanFile, IndexVehFile

Create appropriate indices for activity files, route plans, and TRANSIMS vehiclefiles. These
programs are described in Section 4.5.

11.5.3 Mergelndices

The purpose of the Mergelndices tool is to merge and update potentially large data files without
touching all the data on disk. For example, a 100 Megabyte plan file can be merged with another
100 Megabyte plan file and the result sorted by both departure time and traveler 1D simply by
merging and sorting the indexes for each file properly.

For each input index specified on the command line, copy the desired entries from that index into
an output index. Only those entries whose primary key has not been seen in a previously processed
index aredesired. Theinput indexes are processed from last to first, so this restriction essentially
means that entries from indexes specified later on the command line overwrite those specified
earlier on the command line.

Usage:

Mer gel ndi ces <out put - nane> <i ndex1> [<i ndex2> [<index3> ...]]

Example:

The following command will merge the indexes for transit driver plans stored in the file
plans.transit, plans from thefirst iteration of the Router stored in plans.pop.1, and plans from the
second iteration of the Router stored in plans.pop.2:

Mergel ndices out.trv.idx plans.transit.trv.idx plans.pop.l.trv.idx plans.pop.2.trv.idx

The output index will be out.trv.idx. Assuming all thetransit driver IDs are distinct from other
members of the population, out.trv.idx will contain all of the transit driver plans, all of the plans
from plans.pop.2, and plans for all of thetravelersin plans.pop.1 who did not appear in
plans.pop.2.

Theresulting index can be used to create an index sorted by time using the IndexPlanFile tool.
These indexes can be used directly by the Traffic Microsimulator (or distributed using the
DistributePlans tool, or viewed using the PlanFilter tool) without the need to create an actual file
out containing all the data for the plan legs. If desired, such afile could be created using the -d
option of the PlanFilter tool.

Troubleshooting:

Only the primary key is used to distinguish entries. Thus, Mergelndices works wdl for plans
indexed by traveler ID, but not for plans indexed by departuretime. Similarly, if the household ID
isused as akey, all travelersin a household should be updated at once.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 185
LA-UR —99-2579

11.5.4 IndexDefrag

Defragment and merge the datafiles for an index. The entries in anindex are written to a new
datafilein the order that they appear intheindex. Theindex is modified to use the new datafile.

For example, if vehicles.hh.idx refers to vehiclesl, and vehicles2, then the command

I ndexDefrag vehi cl es. hh.idx vehi cl es. new

will create a new datafile, with the entries from vehiclesl and vehicles2 that occur in
vehicles.hh.idx. Theindex file vehicles.hh.idx will now refer only to file vehicles.new.

11.6 Files

Table99: Indexinglibrary files.

Type FileName Description

Binary Files |libTIO.a TRANSIMS Interfaces library

SourceFiles | btree.h Defines Bt r ee and BTr eeEnt r y data structures and interface
functions
btree.c Btree.h interface functions source file

btree it.h Defines Btreelt data structure and interface functions

btree it.c btree it.h interface functions sourcefile

11.7 Examples

#include "1 O btree. h"
#include "I Q' btree_it.h"

int main(int argc, char* argv[])
{

char* data file;

char* index _file;

BTreeEntry entry,

BTree* tree;

BTreelt *it;

i ndex_file = "sanpl e0.idx";
data_file = "sanplel.dat";

[* Create an index file */

tree = BTree_CreateFronFil e(data_file,
index _file,
kActi vi t yPer son,
kActivityStartM n);

/* Add a second data file to the index */
data_file = "sanple2.dat";
BTree_AddFi | eTol ndex(tree, data_file);

/* Delete an entry */

entry. keyl.i = 0;

entry. key2.f = 0.0;

entry. key type = K IF;

BTree Del eteEntry(tree, &entry);

/* Use an iterator to exam ne each entry */

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 186

it = BTreelt_Create(tree);
BTreelt _Reset(it);
while (BTreelt_MreData(it))
{
BTreeEntry* e;
BTreeEntry* e2;
BTreelt* it2;
/* Get the entry for this iterator */
e = BTreelt_GCet(it);

/* Get a second iterator, pointing to the same entry */

it2 = BTreelt_Cetlterator(tree, e);

/* Get the entry for this iterator */

e2 = BTreelt_Cet(it2);

/* Verify that the entries are the same (they should be) */

if (!BTree_Conpare_Equal (e, e2) || !BTreelt_Compare_Equal (it, it2))

if (!BTree_Conpare_Equal (e, e2))
printf("Entries differ\n");

if (!BTreelt_Conpare_Equal (it, it2))
printf("lterators differ\n ");

/* Cean up the second iterator */
BTreelt _Destroy(it?2);

/* Advance to the next entry */
BTreelt _Advance(it);

}
BTreelt_Destroy(it);
BTree_C ose(tree);

free(tree);
return O;

TRANSIMS-LANL-1.0 — Files— May 1999 Page 187
LA-UR —99-2579

12. VISUALIZATION

This section describes the file formats used as input into the Output Visualizer.

12.1 Terms

Variable Size Box Format A box of any size and location on a given link is described by this
format.

Constant Size Box Format Data for each box of a given fixed sizeis described by this format.

Vehicle Evolution Format Data on vehicle position, type, passengers, and velocity is described
by this format.

12.2 File Format

12.2.1 Variable Size Box Format

Fiddsin the variable size box format are tab-ddimited.

Each line of the variable size box format contains at least six mandatory fidds:

1) TIME

2) LinkID

3) NodelD

4) Distance — the distance where the described box ends from the beginning of the link.
5) Length— thetotal length of the box being described.

6) Datavalue

Additionally, one may add up to nine more data value columns. It is suggested that one provide a
labeling line on the first line of the file describing each column as shown below.

TI ME LI NK NCDE DI STANCE LENGTH Dat aVal 1 Dat aVal 2 Dat aval 3 Dat aval 4. . .

Format:
<TI ME> <Link I D> <Node | D> <Di stance> <Length> <Data Value 1> [<Data Value 2> ... <Data Val ue 10>]

Example:

TIME LI NK NODE DI STANCE LENGTH Dat aVal 1 Dat aVal 2 Dat aVal 3
800 1400 1256 24.75 12. 50 10.0 20. 4 35.6
At time 800 of the simulation, a box should be drawn of length 12.5 that ends 24.75 meters from

node 1256 of link 1400. The data values for each of the first three columns are 10.0, 20.4, and
35.6 respectively.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 188
LA-UR —99-2579

12.2.2 Constant Size Box Format

The Constant Size Box Format (Table 100) is a binary file format and consists of the following
fields in the given order.

Table100: Constant Size Box Format data structurefields.

Time | Current simulation time for which this data has been collected. Integer (32 bits)

Count | Number of vehicles that have passed through during the sampling time. Integer (32 bits)

Link | Linkid for the current box. Integer (32 bits)

Sum | Sum of all velocities for vehicles passing through this box during the Decimal (32 bits)
sampling time.

The constant size box format file should be sorted by the time fied.

12.2.3 Vehicle Evolution Format

The Vehicle Evolution Format (Table 101) is a binary file format consisting of a single data
structure type shown below.

Table101: Vehicle Evolution Format data structurefields.

Field Description Allowed Values

Status Vehicle type number in the lower 8 bits, and the number of passengers | Integer (16 bits)
in the upper 8 hits.

Theta Number of degrees from due east the vehicleis pointed. Theangleis | Integer (16 bits)
calculated counterclockwise from due east.

Time Current simulation time for which this current record has been Integer (32 bits)
collected.

Veocity Current velocity of the vehicle. Decimal (32 bits)

X Current x position of the front middle of the vehicle. Decimal (32 bits)

Y Current y position of the front middle of the vehicle. Decimal (32 bits)

Z Current z position of the front middle of the vehicle. Decimal (32 bits)

VehicleID |VehiclelD. Integer (32 bits)

Link ID Current link 1D on which the vehicle is traveling. Integer (32 bit)

The vehicle evolution file should be sorted by time.

12.3 Utility Programs

12.3.1 vehtobin

The vehtobin program converts |OC-2 text format to the binary format required by the Output
Visualizer. Usageis asfollows:

vehtobin inputfil ename out putfil ename

TRANSIMS-LANL-1.0 — Files— May 1999 Page 189
LA-UR —99-2579

12.4 Files

Table102: Visualization library files.

Type FileName Description

Binary Files |libTIO.a TRANSIMS Interfaces library

Vehtobin vehtobin.h | Defines data structures and interface functions to convert 10C-2 text data
Source Files files into binary vehicle evolution files for use with the Output Visualizer.
vehtobin.c Main function to convert I0C-2 text data files into binary vehicle evolution
files for use with the Output Visualizer.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 190
LA-UR —99-2579

13. CONFIGURATION

This section describes the format of configuration files. Thesefiles contain the parameters used by
the various TRANSIM S software modules.

13.1 Terms
key Character string (containing no spaces) representing a configuration parameter.
value Number or character string.

13.2 File Format

Configuration files are text files that contain lines of the following types:

A key followed (optionally) by a value and (optionally) by a comment starting with the pound
(#) symbol. The key and the value must be separated by space and/or tab characters.

A comment line staring with the pound symbol (#).
A blank line.

13.3 Interface Functions

Functions are available for reading and writing records of a configuration file.

13.3.1 ConfigRead
Sgnature: int ConfigRead(FILE* file, TConfigRecord* record)

Description: Read arecord from a configuration file.

Argument: fil e —FI LE pointer for the configuration file.
recor d — pointer to TConf i gRecor d structure into which therecord is
read.

Return Value: Nonzero if the record was successfully read, or zero if not.

13.3.2 ConfigWrite
Sgnature: int ConfigWritgFILE* file, const TConfigRecord* record)

Description: Writearecord to a configuration file.

Argument: fil e —FI LE pointer for the configuration file.
recor d — pointer to TConfigRecord structure from which the record is
written.
TRANSIMS-LANL-1.0 — Files— May 1999 Page 191

LA-UR —99-2579

Return Value: Nonzero if the record was successfully written, or zero if not.

13.4 Data Structures

13.4.1 TConfigRecord Structure

Structure for configuration file records.
t ypedef struct

/** The key, if the record has one. **/
| NT8 fKey|[64];

/** The value, if the record has one. **/
I NT8 f Val ue[256];

/** The coment, if the record has one. **/
I NT8 f Comrment [512];

} TConfi gRecord;
13.5 Utility Programs

13.5.1 SetEnv

The SetEnv program takes the keys in a configuration file and converts them into UNIX shell
environment variables set to the values corresponding to the keys. Itsfirst argument is the name of
the UNIX shell and its second argument is the name of the configuration file; it does not recurse
nested configuration files. It istypically used as follows:

eval ~SetEnv csh default.config’
eval "~ SetEnv csh ny-run.config’

wheredef aul t . confi g isthe default configuration file identified in the configuration file ny -
run. config.

13.6 Files

Table103: Configuration library files.

Type File Name Description
Binary Files libTIO.a TRANSIMS Interfaces library
Utilities SetEnv Environment variable setting utilities
Source Files configio.h Defines configuration file data structures
and interface functions
configio.c Configuration file interface functions source
file
TRANSIMS-LANL-1.0 — Files— May 1999 Page 192

LA-UR —99-2579

13.7 Configuration Keys

The configuration key CONFIG_DEFAULT_FILE specifies the name of a configuration file
whose keys and values are to be used in cases where a key is not set in the current configuration
file

13.8 Examples

Figure 20 and Figure 21 give examples of typical configuration and default configuration files,
respectively. Note that when keys are duplicated in these files, the value in the non-default file
takes precedence.

Figure20: Example configuration file.

CONFI G_DEFAULT_FI LE / home/transinms/allstr-run/default.config

NET_PROCESS_LI NK_TABLE Process_Li nk. m ni mal . t bl

ROUTER_MAX_DEGREE 15

CA _BI N / hone/ proj ects/transi ns/ config/integration/bi n/ ARCH. PVM SUNASOL2/ CA
CA_SI M_STEPS 7200

CA_MASTER _MESSAGE_LEVEL 1

PAR_COVMMUNI CATION PVM
PAR_SLAVES 1

Figure2l: Example default configuration file.

#H#HHHHHH AR g eE GLOBAL PARANVETERS ######H###BHHHHHHH AR

The width of a lane in neters
float
GBL_LANE_W DTH 3.5

The length of a cell in meters

float
GBL_CELL_LENGTH 7.5

#HHHHHHHH R R TR NETWORK PARANVETERS #########HHHHHHHHAH T

NET_DI RECTORY /' home/ transi ns/ al | str-run/network/
NET_NCDE_TABLE Node. t bl

NET_LI NK_TABLE Li nk. t bl

NET_POCKET_LANE_TABLE Pocket _Lane. t bl

NET_LANE_USE_TABLE Lane_Use. t bl

NET_SPEED TABLE Speed. t bl

NET_LANE_CONNECTI VI TY_TABLE Lane_Connecti vity. tbl
NET_TURN_PROHI BI TI ON_TABLE Turn_Prohi bi ti on. t bl
NET_UNSI GNALI ZED_NODE_TABLE Unsi gnal i zed_Node. t bl
NET_SI GNALI ZED NODE_TABLE Signal i zed_Node. t bl

NET_PHASI NG_PLAN_TABLE Phasi ng_Pl an. t bl

NET_TI M NG_PLAN_TABLE Ti mi ng_Pl an. t bl

NET_SI GNAL_COORDI NATOR _TABLE Si gnal _Coor di nat or. t bl

NET_DETECTOR_TABLE Det ect or. t bl

TRANSIMS-LANL-1.0 — Files— May 1999 Page 193

LA-UR —99-2579

NET_BARRI ER _TABLE
NET_PARKI NG TABLE

NET_TRANSI T_STOP_TABLE

Barrier.tb
Par ki ng. t bl
Transit_Stop.tb

NET ACTIVITY LCCATIGV'TABLE Activity_Location.tbl

NET_PROCESS_LI NK_TABLE

Process_Link.th

NET_STUDY_AREA LINKS TABLE Study_Area Link.tb

#HHHHHH TR AR SYNTHETI C POPULATI ON PARANVETERS ########H#H#HHHHHHHHH

POP_NUMBER _HH
POP_BASELI NE_FI LE
POP_LOCATED FI LE

1000
/home/transins/al |l str-run/output/allstr.basepop
/home/transins/all str-run/output/allstr.|ocpop

POP_STARTI NG VEHI CLE_| D 100000

POP_STARTI NG HH | D

POP_STARTI NG PERSON | D 101

#HHHHHHH R gEEE ACTI VI TY GENERATOR PARANVETERS ########HHHHHH AR HHHHH

ACT_FULL_OUTPUT
ACT_PARTI AL_OUTPUT
ACT_FEEDBACK_FI LE

ACT_ACCESS HEADER

/home/transins/allstr-run/output/allstr.activities
/home/transins/all str-run/output/allstr.partact
/home/transins/allstr-run/output/allstr.actfeed

g g ARrRRRRRRR

ACCESS

#HHHHHH AR gEE OUTPUT PARANVETERS ######H##H AR HHHHHHHHAH T

QUT_DI RECTORY

OUT_SNAPSHOT NAME 1
OUT_SNAPSHOT_BEG
OUT_SNAPSHOT_END_
OUT_SNAPSHOT_TI ME
OUT_SNAPSHOT_EAST
OUT_SNAPSHOT_EAST
OUT_SNAPSHOT_NORT
OUT_SNAPSHOT_NORTH

—|Z|
n I

55!

OUT_SNAPSHOT_NODES_1
OUT_SNAPSHOT LI NKS_1
OUT_SNAPSHOT_SUPPRESS_1
OUT_SNAPSHOT_FI LTER 1

OUT_EVENT_NAME_1

OUT_EVENT_LI NKS_1

OUT_EVENT_SUPPRESS_1

OUT_EVENT_FI LTER 1

OUT_SUMVARY_NAME_1

OUT_SUMVARY_BOX_LENGTH 1
OUT_SUMVARY_EASTING M N_1
OUT_SUMVARY_EASTI NG_MAX_1

T

T
NG_
NG_MAX_
5 M N_
5 MAX_

/ hone/ transi ns/al |l str-run/out put

al | str. snapshot

0

86400

1

1

1000000

1

1000000

/horre/ transi ns/al |l str-run/data/allstr.nodes
/hore/transins/allstr-run/data/allstr.links

|1
1

1
1

al I str.event

0

86400

1

1

1000000

1

1000000

/horre/ transi ns/al |l str-run/data/allstr.nodes
/hore/transins/allstr-run/data/allstr.links

all str.summary

1000000

TRANSIMS-LANL-1.0 — Files— May 1999

LA-UR —99-2579

Page 194

OUT_SUMVARY_NORTHING M N1 1

OUT_SUMVARY_NORTHI NG_MAX_1 1000000

OUT_SUMVARY_NCDES_1 /hone/transins/allstr-run/data/allstr.nodes
OUT_SUMVARY_LI NKS_1 /hone/transins/allstr-run/data/allstr.links
OUT_SUMVARY_SUPPRESS_ 1

OUT_SUMVARY_FI LTER 1

#HHHHHH AR TR EE S| MULATI ON PARANVETERS #########HHHHHHHHRHT

see O log.h for possible levels
CA_SLAVE_MESSAGE_LEVEL 0
CA_MASTER MESSAGE_LEVEL 0

name of executable (used by Msimpl)
CA BIN CA

the max nunber of occupants of a bus
#int > 1
CA_BUS_CAPACITY 50

the number of cells a bus occupies in a jam

float > 0.0

CA_BUS_LENGTH 2.0

the acceleration of a car, bus, etc.

(in cells per tinmestep per tinestep)

float > 0.0

CA_MAXI MUM_ACCELERATI ON 0.4

CA_BUS_MAXI MUM_ACCELERATI ON 0.1

the maxi num speed of a car, bus, etc.

(in cells per tinestep)

float > 0.0

CA_MAXI MUM_SPEED 4.5

CA_BUS_MAXI MUM_SPEED 2.5

|f nonzero, no attenpt will be made to read in transit vehicles
and transit passengers will not be sinulated.

#int(?)

CA_NO TRANSI T 1

Some tine after a vehicle becomes off plan, it will exit the sinulation.
the probability that a vehicle with speed >= 1 will decelerate by 1
(also an increment added to the speed limt on a |ink)

in the discrete version (not conpiled with -DCONTI NUCUS)

float > 0 and < 1

CA_DECELERATI ON_PROBABI LITY 0.2

use to conpute the nunber of cells that nmust be vacant in an acceptabl e gap
(acceptable gap is speed of oncom ng vehicle * Velocity Factor)

float (> 1.0 ?)

CA_GAP_VELOCI TY_FACTOR 3.0

Probability of proceeding when interfering gap is not acceptable

in cases of links with conpeting stop/yield signs
float > 0 and < 1
CA_| GNORE_GAP_PROBABI LI TY 0. 66

The nunber of vehicles which can be buffered in each
of an intersection's queues (One queue for each | ane of each inconing |ink)
#int > 1

CA_| NTERSECTI ON_CAPACI TY 10

Vehicles take at least this nany tinmesteps to traverse an intersection
#int >= 0

CA_| NTERSECTI ON_WAI T_TI ME 1

Can’t change lanes if randomvariable drawn on each timestep for each vehicle

CA_LANE_CHANGE_PROBABI LI TY 0.99

nunber of cells ahead to | ook for deciding which |ane is best upon entering a link
#int >= 0
CA_LOOK_AHEAD_CELLS 35

TRANSIMS-LANL-1.0 — Files— May 1999 Page 195
LA-UR —99-2579

|f vehicle has not noved for this many tinesteps,

it becones off-plan and chooses a different destination link, if possible.
#int >=0

CA_MAX_WAI TI NG_SECONDS 600

The exit time is the mninmumof the expected arrival tine at the destination
and the current tine + OFF_PLAN EXIT_TI ME

#int >=0

CA OFF_PLAN EXIT_TIME 1

Determines, in a conplicated way, whether |ane changes for the
sake of followi ng a plan need to be considered

#int >= 0

CA_PLAN _FOLLOW NG CELLS 70

specify start time for simulation
int

CA_SI M START_HOUR 0

CA_SI M START_M NUTE 0

CA_SI M _START_SECOND 0

nunber of timesteps to sinmulate
#int >=0
CA_SI M_STEPS 3600

send map of locations of all accessories to all slaves
CA_BROADCAST_ACC_CPN_MAP 0

mgrate travel ers by broadcasting them
CA_BROADCAST_TRAVELERS 1

nunber of tinme-steps to be executed before slaves synchronize with naster
CA_SEQUENCE_LENGTH 1

Initialize the random seed

seed48 is called with a pointer to the first elenent of an array
of these 3 unsigned shorts

unsi gned short

CA_RANDOM SEED1 1

CA_RANDOM SEED2 2

CA_RANDOM SEED3 3

Use the cached binary representati on of the network database
#in the file specified by CA NETWORK_FI LE

int

CA_USE_NETWORK_CACHE 0

string

CA_NETWORK_FI LE

The followi ng delays nodel just the tine it takes to walk up the steps or
through the doors or whatever. They have nothing to do with the

time spent waiting in the queue.

The mean nunber of seconds it takes a traveler to board a transit vehicle.
float >= 0.0

CA ENTER TRANS| T_DELAY 1.6

The mean nunber of seconds it takes to disenbark.
float >= 0.0
CA EXIT_TRANSI T_DELAY 1.8

The nunmber of seconds after a vehicle reaches the stop before
passengers can start boarding
CA TRANSIT_INITIAL_WAIT 5

Name of a file containing TRANSIMS format vehicle infornmation
(locations, type, etc.)
CA_VEH CLE _FILE /hone/transins/allstr-run/output/allstr.vehicles

CA USE_PARTI TI ONED_ROUTE_FI LES 0

CA_LATE_BOUNDARY_RECEPTI ON 1
CA PARALLEL_LOG 0
TRANSIMS-LANL-1.0 — Files— May 1999 Page 196

LA-UR —99-2579

CA PARALLEL_| O TEST_MODE 0
CA PARALLEL_| O TEST_INTERVAL 30

CA OUTPUT_BUFFER_COUNT 32

CA _RTM SAMPLE_| NTERVAL 0

#HHHHHH AR AR EE TRANSI T PARANVETERS #########HHHHHHHHAH T

Name of a file containing TRANSIMS format transit route information
(list of stops for each route)

string

TRANSI T_ROUTE_FI LE / hone/transins/allstr-run/data/allstr.routes

Name of a file containing TRANSIMS format transit schedule information
(list of arrival tinme for each vehicle at each stop)

string

TRANSI T_SCHEDULE _FI LE /home/transins/allstr-run/data/allstr.schedul es

#HHHHHH AR TR EE PLAN PARAVETERS ######HHHH# AT HHHHHHHHHHT

Name of a file containing TRANSIMS fornat |egs
string
PLAN_FILE /hone/transins/allstr-run/output/allstr.plans

#HHHHHH AR AEE ROUTER PARAVETERS ######H###HHHHHHHH AR

ROUTER_QUTPUT_PLAN FI LE /hone/transinms/allstr-run/output/allstr.plans
ROUTER_ACTI VI TY_FI LE /home/transins/allstr-run/output/allstr.activities
ROUTER_VEHI CLE_FI LE /' home/transins/allstr-run/output/allstr.vehicles
ROUTER_MODE_MAP_FI LE /home/transins/al |l str-run/data/allstr.nodes

ROUTER_MAXNFASI ZE 5
ROUTER_MAX_DEGREE 15
ROUTER_| NTERNAL_PLAN_SI ZE 400
ROUTER_VERBOSE 2

If length < corr_thresh * dist, adjust the length
fl oat
ROUTER_CORR 0.0

??
float
ROUTER_OVERDO 3.0

Backdating time of travel information ??
int
ROUTER_ZERO BACKD 0

#H#HHHH AR R R g EE LOGE NG PARANVETERS #########HHHHHHHAH]

LOG LOG_CONFI G
LOG_LOAD_NETWORK
LOG_PARTI TI ONI NG
LOG_DI STRI BUTI ON
LOG_RUNTI NEMONI TOR
LOG_CONTROL

LOG TI M NG
LOG_BOUNDARI ES
LOG_ROUTI NG
LOG_ROUTI NG _DETAI L
LOG_TI MESTEP

LOG_TI MESTEP_DETAI L
LOG_PARALLEL
LOG_VEH CLES

LOG_M GRATI ON

LOG_M GRATI ON_DETAI L
LOG_TRANSI T

LOG_EM SSI ONS

LOG | O DETAI L

ORRPRRRRPRORRRROROORRREO

#a#HHHHHn R R aEE Vl SUALI ZER PARANVETERS ########HHHHHHH#HH]

#int, will be single buffered if non-zero

TRANSIMS-LANL-1.0 — Files— May 1999 Page 197
LA-UR —99-2579

VI'S_SI NGLE_BUFFERED 0

Name of a file containing batch comrands (unused)
string
VI S_BATCH FI LE

The length of a box in nmeters
fl oat
VI'S_BOX_LENGTH 150.0

#HHHHHH AR R AR EE PARTI TI ONI NG PARANVETERS ########H#H#H#H#HH

PAR_PVM ROCT / sw/ Cvol / pvnB
PAR_PVM _ARCH SUNMASOL2
PAR_PVM WAI T_FOR_DEAMON 20

PAR_MPI _ROOT / sw/ Cvol / npi ch
PAR_MPI _ARCH solaris

PAR_MPI _DEVI CE ch_p4

PAR_M N _CELLS TO SPLIT 10

PAR_SLAVES 2

if 1, use orthogonal bisection to distribute the network
otherw se, use the METIS graph partitioning library
int

PAR_USE_METI S_PARTI TI ON 1
PAR_USE_OB_PARTI TI ON 0
PAR_PARTI TI ON_FI LE /tnp/partition
PAR_SAVE_PARTI Tl ON 0

if 0 use (nunber of lanes) for edge weight, (length * nunber of

and O for node weights in the partitioning algorithm

otherwi se, use the file named in RTM FEEDBACK_FI LE and RTM PENALTY_FACTOR
int

PAR_USE_RTM FEEDBACK 0

Filename for edge and node weights for partitioning

File format is lines of the form

0 1d Wi ght

1 1d Wight Penalty

The first line sets a node wei ght

the second |line sets an edge weight: if penalty is -1, use current value *

RTM_PENALTY_FACTOR

F*

string
PAR_RTM FEEDBACK_FI LE [tnp/rtm

See above for RTM FEEDBACK_FI LE
float > 0.0
PAR_RTM PENALTY_FACTOR 100. 0

PAR_REPORT_OUTGO NG LI NK_TIME_ONLY 1
HUHHHHH BB SELECTOR PARANETERS ##HHHHHHHH T

Only travel ers whose (actual - expected) / expected

is greater than this will be affected by any operations
float > 0

SEL_FRUSTRATI ON_THRESH 1. 5

Fraction of travelers to select for
just rerouting

reassigning activities

choosi ng a new node preference

changing the time of activities

float, >= 0 and <=1
SEL_REROQUTE_FRAC 0. 1

SEL_REASSI GN_FRAC 0.1
SEL_REMODE_FRAC 0.1

SEL_RETI ME_FRAC 0.1

Name of files in which to place traveler ids
sel ected for each of the possible changes

ot herwi se use Penalty * RTM PENALTY_FACTOR

| anes) for edge penalty

TRANSIMS-LANL-1.0 — Files— May 1999
LA-UR —99-2579

Page 198

string
SEL_REROUTE_FI LE
SEL_REMODE_FI LE
SEL_RETI ME_FI LE
SEL_REASSI GN_FI LE

#
Local Vari abl es:
tab-width: 4

End:

#

TRANSIMS-LANL-1.0 — Files— May 1999 Page 199
LA-UR —99-2579

14. LOGGING

The TRANSIMS logging interface is to be used for the logging output of all applications that will
be part of the TRANSIMS suite of software modules and will be integrated into the devel opment
environment. Using a single interface allows the standardization of logging messages.

14.1 Terms
MSG_PRINT Normal informative message.
MSG_WARNING Warning that may need user attention but is most likely not to

corrupt the application results.

MSG_SEVERE_WARNING Warning that does not require the user to shut down the
application but will most likely result in corrupted output.

MSG_ERROR Actual error message that results in immediate termination of the
program.

14.2 Interface Functions

Each logging message is associated with a module passed in the parameter t heSubSyst em There
are predefined modules for most subsystemsin TRANSIMS (see 10/log.h for alist.)

There are four different message levels that are passed in the parameter t heMessagelLevel :

1) MSG_PRINT: Thisisanormal informative message. It does NOT describe awarning or an
eror.

2) MSG_WARNING: Thisisawarning that may need user attention, but is most likely not to
corrupt the application results.

3) MSG_SEVERE_WARNING: Thisisawarning that does not require the user to shut down
the application but will most likdly result in corrupted output.

4) MSG_ERROR: Thisisan actual error message that results in immediate termination of the

program.

The parameter For mat contains the actual message. It isinterpreted as a C-stylepri nt f (1)
format string that permits the passing of additional parameters after the format string. Thereisno
need to terminate the format string with a newline character, since that will be automatically added.

Notes:

1) Do not try to by-pass the interface since this may result in messages getting lost.

2) Refrain from using the strings “ ERROR” or “ WARNING” (or any other pattern listed in the
DEFINES-Reserved String Pattern section of thelog.h file) in your messages. The interface
will add appropriate strings to your messages so that they can be identified.

3) Choose the message leve with care since “harmless’ levels such as MSG_PRINT or
MSG_WARNING may be deactivated when the application is run in production mode. Really
important messages should be of type MSG_SEVERE_WARNING or MSG_ERROR.

TRANSIMS-LANL-1.0 — Files— May 1999 Page 200
LA-UR —99-2579

4) Do not make any assumption about where the logging output will end up. The default will be
standard output, but it will also be redirected to afile.

voi d
cMessage(enum TSubsyst em t heSubSyst em enum TMessagelevel
t heMessagelLevel , const char * Format, .);

14.3 Files

Table104: Logging library files.

Type File Name Description
Binary Files libTl1O.a TRANSIMS Interfaces library
Source Files log.c Source for logging functions

log.h L ogging interface functions sourcefile

14.4 Examples

cMessage (SUB _CA, MSG WARNING “Mre vehicle (%) than expected (%),
Nr O Vehi cl e, Nr O Expect edVehi cl es;

TRANSIMS-LANL-1.0 — Files— May 1999 Page 201
LA-UR —99-2579

15. REFERENCES

[BBM 96] R. J. Beckman, K. A. Baggerley, and M. D. McKay, Creating Synthetic
Baseline Populations, Statistics Group, Los Alamos National Laboratory,
Los Alamos, NM, 1996.

[BI] J. Blodgett, “ MABLE/GEOCORR Geographic Correspondence Engine,”
http://www.oseda. missouri.edu/plue/geocorr/doc/article.html.

[Ce 96] K. Cervenka, personal communication, 1996.

[Do 97] R. Donndly, personal communication, 1997.

[GHA 88] Federal Highway Administration, Manual on Uniform Traffic Control
Devices, (Washington, D.C.: U.S. Government Printing Office, 1988).

[ITE 85] Institute of Transportation Engineers, Traffic Control Systems Handbook,
(Washington, D.C.: ITE Publications, 1985).

[ITE] Institute of Transportation Engineers, Traffic Detector Handbook,
(Washington, D.C.: ITE Publications, n.d.).

[MM 84] M. D. Meyer and E. J. Miller, Urban Transportation Planning, (New
York: McGraw-Hill, 1984).

[Or 93] F. L. Orcutt, Jr., The Traffic Sgnal Book, (Englewood Cliffs, New Jersey:
Prentice Hall, 1993).

[PP 93] C. S. Papacostas and P. D. Prevedouros, Transportation Engineering and
Planning, (Englewood Cliffs, New Jersey: Prentice Hall, 1993).

TRANSIMS-LANL-1.0 — Files— May 1999 Page 202

LA-UR —99-2579

